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Abstract
Effekt is a research programming language that features a lightweight
implementation of effects and handlers. As part of this thesis, the language
was extended with second-class modules and related functionalities. These
new features allow programmers to define modules and abstract them with
interfaces. Also, the module system aims to strengthen the interplay between
effects and modules. Both concepts share common characteristics, paving the
way for potential future unification. This work examines those possibilities
and provides insights into the relationship of modules and effects.
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Zusammenfassung
Die steigende Komplexität von Computerprogrammen stellt Entwickler vor
ein großes Problem. Sie müssen komplizierten Quelltext verstehen und die
Verbindungen zwischen den einzelnen Komponenten verinnerlichen, um bei
Änderungen nicht das System aus dem Gleichgewicht zu bringen. Als Abhilfe
für dieses Problem bieten sich die Modularisierung von Anwendungen an.
Diese Technik basiert auf dem Konzept von Modulen, welche die Bausteine
für Programme bilden. Programmiersprachen können um diese Konstrukte
erweitert werden, um die Anwendung von Modulen zu vereinfachen.

Module alleine können jedoch nicht jedes Problem beheben, welches
komplexe Software mit sich bringt. Ein weiterer Stolperstein entsteht
durch das Auftreten von Seiteneffekten. Als Seiteneffekt bezeichnet man
zusätzliche Auswirkungen auf den Zustand eines Programms, welche während
dem Ausführen von Funktionen auftreten. Auch hier gibt es eine bekannte
Lösungsmöglichkeit: Algebraische Effekte. Diese helfen Programmieren das
Auftreten von Seiteneffekten klar zu spezifizieren und zu kontrollieren.

Effekt ist eine Programmiersprache welche aus der Forschung an
Algebraischen Effekten hervorgegangen ist. Im Rahmen dieser Arbeit wurde
nun ein Modulsystem in diese Sprache integriert. Die Motivation für diese
Erweiterung ist die Untersuchung des Zusammenspiels zwischen Effekten und
Modulen. Als Ergebnis wurden Gemeinsamkeiten und Zusammenhänge beider
Konzepte entdeckt, welche Grundlage sein können für weitere Forschung auf
diesem Gebiet.
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Chapter 1

Introduction

A major challenge in modern software development is the increasingly
complexity of programs. This problem affects developers as well as their
tools. Programmers need to overlook extensive code bases and remember
complex interactions between various components. Also, their tool chain
might suffer from this burden because even tiny changes require the entire
project to be rebuild. This costs valuable time and computing resources. A
common solution to those problems is modularization. This technique involves
fine-grained software entities called modules. The goal of this process is the
decomposition of complex systems into manageable and easily understandable
units. This allows programmers to unravel monolithic applications and
delegate responsibilities to certain modules. Developer tools like compilers can
benefit from this transition too. They can track dependencies between modules
and only recompile them if needed. Thus, it is desirable for programming
languages to implement a module system.

However, modules alone cannot remedy all hurdles of complicated software.
Namely, side-effects remain an unseen source of errors. A side-effect occurs
when a function modifies the execution context as a byproduct of its
computation. Such an interference potentially comprises the correctness of an
application but can be difficult to detect. Research on this topic culminated
in the specification of algebraic effects. This allows programmers to be upfront
about possible side-effects of a function. Algebraic effects provide a tool to
model a side-effect and annotate it to the signature of functions. Calling such
an effectful function requires the context to provide handlers for all listed
effects. Programming languages with an effect system support the controlled
use of side-effects.

Effekt is a functional programming language which supports the definition
and handling of effects. Besides type-safety, this language promises to ensure
an additional property named effect safety. Thus, the compiler checks if

1



2 CHAPTER 1. INTRODUCTION

effects are properly annotated to functions and eventually handled. Now,
the language is extended with a module system to make it suitable for
programming in the large. Interestingly, modules in Effekt are not first-class
but second-class entities. This choice is rooted in an effort to pursue
compability between effects and modules. Nevertheless, the module system
presented in this work can still express common use-cases of modules.

This thesis covers the design and implementation of a module system for the
programming language Effekt. It is structured as followed: Chapter 2 presents
the concepts of modules and algebraic effects. Those theoretical constructs are
complemented with practical examples in the following Chapter 3. Motivated
by these uses-cases, Chapter 4 dives into the design of the module system.
Chapter 5 briefly walks through the implementation of modules in the Effekt
compiler. Lastly, Chapter 6 summarizes the results of this work.



Chapter 2

Concepts

This chapter introduces major concepts from the topics of modules and
algebraic effects. The novelty of this thesis grounds on the integration of
a second-class module system into an effectful programming language. Both
concepts by itself are neither new nor will be reinvented in this work. Modules
(Sec. 2.1) and algebraic effects (Sec. 2.2) have been around for quite a while.
However, the niche that is explored in this thesis is the combination of both
(Sec. 2.3). Before the resulting module system is put into action (Chp. 3),
the following sections will provide a brief insight into the worlds of effects and
modules.

2.1 Modules
Modules are fundamental building blocks of software and can be combined
and composed to create complex systems. Programmers can leverage modules
to break monolithic applications into smaller, manageable components (Sec.
2.1.1). This process is called modularization and might benefit users, as well as
the compiler itself (Sec 2.1.2). Information hiding (Sec. 2.1.3) has emerges as
a key strategy to guide the design of modular applications. It revolves around
the idea to use modules to conceal as much implementation details as possible.
Compared to other language constructs, like namespaces and packages (Sec.
2.1.4), modules can act as more than simple code containers. They are a
versatile tool that can adopt to many use-cases.

2.1.1 Modular Programming

Modular programming aims to make programs flexible and maintainable.
Without the usage of modules the code base of a program becomes a

3



4 CHAPTER 2. CONCEPTS

monolith. In this scenario all pieces of the software are tightly-coupled
together. This poses a major hurdle for programmers as well as the compiler.
Maintainers of such a code base need a deep understanding of the whole
program in order to introduce non-breaking changes. Even slight modifications
require the compiler to reprocess the entire project. Those problems can be
countered with modular programming[6]. Developers use this technique to
break programs into smaller parts. Those fine-grained software components are
called modules[19]. Each module has a well-defined boundary and relationship
to other modules. Programmers can then construct applications by combining
various modules, each bearing responsibility for a specific task. Modular
programming emphasizes the design of software as a composition of smaller,
interchangeable units.

The key benefits of modules are: lose-coupling, separation of concerns,
code reuse and encapsulation. First off, modularization makes inter-code
relationships more visible, since modules clearly define their dependencies
towards each other. In most cases, a module might only depend on a general
description of a functionality, rather than a specific implementation and thus
accounts for lose-coupling. Programmers aggregate related code in one module
and distribute responsibilities for certain features of the application over
distinct modules. This allows for separation of concerns and efficient code
reuse. And last but not least, modules have the ability to hide parts of their
implementation from the outside through encapsulation. This is especially
handy to protect the internals of a module from unwanted access and/or to
guard strict life-cycle protocols, e.g. for files managed by the module. Modules
come with various benefits that help programmers to tackle complexity in
software design.

Modules exists in various shapes and forms. The Standard ML
programming language defines modules as a pair of signature and structure[13].
In this context, those terms roughly translate to interface and implementation
respectively. Users define signatures and structures separately and provide
different implementations for a signature. Also, one structure might implement
multiple signatures at once. Programmers dynamically compose modules using
functors. A functor can be described as a high-level function that takes
modules as arguments and produces a new module. Structures, signatures and
functors are the cornerstone of ML’s module system and can also be found in
Wyvern[15], an object-oriented programming language featuring effects (Sec
2.2). Wyvern further divides modules into two categories: pure and resource
modules[14]. The major difference between those two is that a resource module
might bear state and can use other resource modules, which is forbidden for
a pure module. While there are commonalities between module systems, they
differ in crucial details, making each one standing out in their own way.
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Understanding software as a network of collaborating modules is the core
essence of modular programming. Just like individuals share labor in a
collective production, modules work together and distribute responsibility.
Each module contributes domain-specific knowledge to the entirety of the
system. Multiple modules can provide distinct solutions for the same
problem, allowing users to try different strategies. This interchangeability
of modules comes from the distinction between the interface of a module and
its implementation.

2.1.2 Separate Compilation

Module BModule A
Module C

Module D

Figure 2.1: Example of a module dependency graph.

Users might want to compile only a subset of modules instead of the entire
project. This requires the compiler to track the dependencies of any module.
Fig 2.1 depicts such knowledge in form of a dependency graph. Each box in the
graph represents a module and an arrow from X to Y indicates that module
X depends on Y. In this example, the modules C and D depend on B, while
B only depends on A. Therefore, module A is a transitive dependency of C
and D. Thus, in order to compile module C, the compiler needs to process A
first, continue with B and finally look at the sources of C. In this case, module
D does not need to be compiled at all. If B changes afterwards, the compiler
only needs to recompile the modules B and C, because the output of A can be
reused from the previous run. This technique can have a major impact on the
overall compile time of a program.

Separate compilation requires the compiler to produce a deterministic
output for any given module. In this context, compiling the same modules
twice in a row must lead to an identical result. Only if the compile
satisfies this requirement, it might omit additional runs and reuse an existing
output. Cut-off compilation[1] can further reduce the costs of recompilation
by analyzing the signature of modules. In cases where a module changes its
implementation but maintains a stable interface, consumers of the module
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also do not need to be recompiled. Introducing modules into a programming
language also opens the door for additional compiler optimizations.

The benefits of modules are not limited to the users but also affect the
compiler as well. Key features of modules include their well-defined boundaries
and dependencies. This helps the compiler to understand the structure of a
program. The knowledge about these relationships allows to determine an
order in which modules need to be compiled. Also, the impact of modifications
in the code base can be tracked. The compiler can then decide if a module is
affected by those changes and therefore must be recompiled. Due to modules,
compilers can make efficient use of computing resources.

2.1.3 Information Hiding

In 1972, Parnas et al.[18] conducted a case study to contrast two approaches
of modularization. A simple text processing application serves as starting
point for the experiment. Then, the authors present two modular designs
centered around different criteria. The first design is derived from a flow-chart
representation of the application logic. Each step of the processing pipeline is
delegated to a own module. The second approach follows a philosophy known
as information hiding. In this case, each module encapsulates a design decision,
e.g. how a single line is stored. Subsequently, the adaptability of both designs
is discussed. For this purpose, possible changes in the implementation details
of the application are examined, e.g. supporting a different input format.
As a result, the authors conclude that modules should be used to capture
and conceal difficult design decisions rather than representing steps of the
application flow.

Modules are no silver bullet. Their mere existence does not guarantee
programs to be flexible and adaptable. In the worst case, a naive use of
modules can even work against those goals. Thus, it is important to chose
an appropriate criteria to ground modularization. As a first step towards the
decomposition of a system, developers should identify crucial design decisions.
Then, each decision can be concealed by a module leaving room for future
reconsideration. The modularization of software requires careful planning.

Information hiding postulates the design of modules around
implementation details that are likely to change. This principal bases
on the distinction between module interfaces and implementations. An
interface specifies the general behavior and abstracts the module. For
instance, an interface might describe some kind of persistent storage by
defining methods to read and write data. Users of this functionality can
write code against the interface specification rather than depending on a
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certain implementation. Programmers might want to change the location
where the data is stored or what format is used in future. Nevertheless, the
consumers of this module remain unaffected from this modifications as long
as the interface stays stable. Information hiding aims to minimize the overall
impact of internal changes on the code base.

Information hiding is closely associated with the separation of concerns
and encapsulation. Design decisions belong to those concerns modules are
trying to separate. They do so by encapsulating their implementations and
shield internals from the outside. Thus, developers can utilize these benefits of
modules to achieve flexibility and counter complexity. Programmers can treat
information hiding has a guideline to make best use of modules.

2.1.4 Packages and Namespaces

Programming languages like Java[9] and C++[8] use packages or namespaces
to organize code. Each package or namespace provide a fresh environment
for names. Both concepts are comparable to folders of a file system. They
can be recursively nested and their contents can be globally identified using
their absolute path, which is also called a qualified name. Multiple definitions
with the same name and signature can coexist in a project when they are
declared in different scopes. Usually these declarations can be referenced
in two ways: Either by using the fully qualified name or by importing the
package/namespace into the current scope. Thus packages and namespaces
divide the code base into smaller, reusable groups.

One might argue that information hiding can be achieved using Java
packages, which is not the case. A definition might be prefixed with the
package keyword. This restricts the access to members of the same package.
Therefore this keyword could be used to hide information from the outside and
makes it only visible to the inside. However, this argument quickly falls apart
with a closer look on how packages are declared. There is no restriction which
classes or interfaces can become part of a package. Even if the packages was
declared in another library or dependency, the user can sneak in additional
definitions. This allows programmers to bypass this kind of access control.
Packages in Java are no sufficient tool for information hiding.

Namespaces and packages are neither first- nor second-class objects (Sec.
4.1.1). They mainly exist to organize code and to avoid naming clashes. Their
names can only appear as prefix of an identifier to form a qualified name
or as part of an import/use statement. Modules on the other hand have
actual instances that can be part of computations. This makes packages and
namespaces less powerful than modules. They mainly exist from a structural
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point of view. Packages and namespaces cover only a small subset from the
features of modules.

2.2 Algebraic Effects
Algebraic effects and handlers offer a concept to control side-effects in
programs[22][20][23]. A side-effect is any kind of contextual modification
occurring during one function call. Programmers use algebraic effects to
model those operations (Sec. 2.2.1). Functions express their side-effects with
additional annotations in their signature (Sec. 2.2.2). In order to call such an
effectful functions, the calling context has to provide handlers for all declared
effects (Sec. 2.2.3). This allows programming languages to ensure that all
side-effects are eventually handled, resulting in a property called effect safety.
Thus, programmers can define, use and handle side-effects in a transparent
fashion.

2.2.1 Side-Effects

Computations can have additional byproducts, such as the modification of
global state. Traditionally, the signatures of functions express what kind of
data is needed to call the function and what can be expected from its return
value. However, a function call might also impact the state of the system.
Besides from simply computing a result, functions can read and change the
value of a global variable or print messages to the console. Those operations are
called side-effects[21]. They can cause consecutive calls of the same function to
yield different results because its execution context changed. Thus, side-effects
can have far-reaching consequence on the correctness of a program. This places
a burden on consumers of such functions, since their behavior is hard to grasp
from the outside. Without further language features, programmers need to
inspect the implementation of functions to uncover their side-effects.

1 effect Write(msg: String): Unit

Figure 2.2: Example of an effect definition in the Effekt programming
language.

Programming languages require a way to define side-effects, in order to
track them. Figure 2.2 shows an example of a side-effect definition written in
Effekt[4]. The keyword effect is used to declare a new side-effect with the
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name Write. This effect consists of a single operation, expecting one argument
of type String and producing a void result. Thus, this effect represents some
kind of output that swallows a textual message. In Effekt, such definition is
called an effect signature. Programmers can use them to model side-effects.

Effect signatures relate to module interfaces. Both are separated from their
implementation and list available operations. An effect signature allows the
abstraction of a side-effect with the same methods interfaces use to abstract
behavior or data. Thus, effect signatures are the specifications of side-effects.

2.2.2 Effectful Functions

1 def hello(name: String): String / { Write } = {
2 var msg = "Hello " ++ name
3 do Write(msg)
4 return msg
5 }

Figure 2.3: Function that uses the effect Write from Figure 2.2.

The signatures of effectful functions communicate their use of side-effects.
Figure 2.3 demonstrates the declaration of such a function. This signature
reads as: ”Given an argument of type String, this function produces a result
of type String and requires the calling context to handle the effect Write.”[4].
Inside the body, functions can invoke the operations of those effects with the
do keyword. In this example, the function hello concatenates the string literal
"Hello " with the input parameter. Then, this message is used to call the
effect operation Write and finally returned as result value. A function might
only use side-effects annotated to its signatures.

Effectful functions are the consumers of effects. This corresponds to the
concept of consuming a module. However, instead of declaring a parameter
bound to an effect type, programmers annotate the types of required effects
to the return type of a function. In Effekt, this is done using the pattern
/ { Effect1, ..., EffectN }, which describes a set of effects. Also, it is
possible to omit this annotation and let the compiler infer the required types.
A function consumes effects exclusively through their signatures.

2.2.3 Effect Handlers
Effect handlers provide a mechanism to implement effects. Figure 2.4 and
2.5 both show possible handlers for the effectful function from Figure 2.3.
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1 def handle1() = {
2 try { var str = hello("Effekt") }
3 with Write { (msg) => println(msg); resume(()) }
4 }

Figure 2.4: Effect handler for Figure 2.3 that resumes the function.

1 def handle2() = {
2 try { var str = hello("Effekt") }
3 with Write { (msg) => "Cancel" }
4 }

Figure 2.5: Effect handler for Figure 2.3 that provides a result.

The first implementation prints the message to the console. After that, the
keyword resume is used to jump back into the function. Since Write declares
Unit as its return type, the matching literal is passed to resume. This
allows hello to complete its computation and the variable str stores the
value "Hello Effekt". The second example implements a different behavior.
Instead of calling resume, this handler provides an alternative return value for
the effectful function itself. Thus, the execution of hello is not continued.
The variable str will now contain the value "Cancel". Effect handlers can
decide whether the call of an effect operation returns a result or terminates
the function.

Effect handlers are the counterpart to effects and provide their
implementation. Again, there is a strong analogy to the concept of modules.
Compared to a module implementation, handlers have additional abilities,
which allow them to cancel the execution of a function. This resembles the
control-flow construct of exceptions, which in fact can be treated as simple
examples of handlers. An effect handler inverts the control over side-effects
from a function to its caller.

2.2.4 Exceptions and Continuations

Exceptions[2] and continuations[7] can alter the execution flow of a program.
In the imperative world each function call is executed synchronously and will
eventually produce a return value. In some cases developers need to break
these constraints. Asynchronous communications like network or bluetooth
connections are hard to model using only synchronous functions. If the
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program waits for a response, the execution needs to be blocked, which wastes
computing resources and makes the application unresponsive. Also, such a
communication might be error-prone due to unstable connections or corrupted
messages. In this case, functions need to return distinct values to express
the failure or success of an operation. Additional language features support
developers to deal with these problems.

Continuations and exceptions extend the traditional concept of functions
and help to model error-prone and asynchronous code. Instead of providing
a result, functions can throw an exception. In this case, the execution halts
and all local state is lost. If a programmer only wants to temporary interrupt
the execution, coroutines and continuations can come handy. Like exceptions,
they offer an additional way of manipulating the execution flow. A coroutine
still promises to deliver a result but it might do so in an asynchronous fashion.
Continuations are used to capture the state of a suspended coroutine and allow
to resume their execution. Thus, continuations and exceptions serve different
use-cases.

Plotkin et al.[23] identified exceptions as a basic example of algebraic
effects. Programming languages differ in the extent they track exceptions:
Python or Kotlin do not track them at all, in Swift the return type needs
to be annotated with the throws keyword to indicate that a call might fail
and Java requires the declaration of each type of exception that might occur
during execution. Regardless of these differences, all languages introduce a
similar construct to handle exceptions. They all use some kind of try/catch
statement. The try keyword is followed by a scope in which programmers
can place unsafe code. It is then followed by one or more catch statements,
each handling a different type of exception. The definition of handlers in the
caller scope is nearly identical to the handling of algebraic effects. However,
exception handlers have no means of redirecting the control flow back to the
function. This is not true for effect handlers, which can decide whether to
resume or abort an execution. Thus, algebraic effects and their handlers
combine the abilities of continuations and exceptions.

2.3 Contribution
The results of this work are of practical and theoretical nature. Overall, the
motivation of this thesis is to narrow the gap between effect and module
systems (Sec. 2.3.1). However, such effort faces hurdles on different layers
(Sec. 2.3.2). For example, there is no uniform definition that pins down the
concept of a module. The following sections outline the scope and pitfalls
surrounding the design and implementation of the module system for Effekt.
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2.3.1 Main Goal

While researchers have covered many aspects of effect systems, their
combination with modules remains a niche topic. Languages like Frank[12],
Helium[3] and Koka[11] offer different implementations of algebraic effects
and handlers. However, they lack the ability to define modules. Wyvern[15]
is one of the few programming languages that features both a module and
an effect system[14]. This language follows the paradigm of object-oriented
programming and uses first-class modules to model capabilities. In contrast,
Effekt is a functional language that uses capabilities to implement lightweight
effects[4] . As part of this thesis, a second-class module system was integrated
into Effekt. The contributions of this work can be summarized as:

• the design of a module system that accompanies an existing effect system.

• a proof-of-concept implementation of said system in the Effekt
programming languages

• exploration of the relationship between effects and modules

This effort aims to acquire new insights into the overlaps of effects and modules,
as well as their possible interactions.

So far, Effekt only provided basic constructs named after modules. They
were mainly used to organize source files. Therefore the number of modules in
a program was directly linked to its number of files. To break this constraint,
additional languages entities are introduced. This also includes a notion for
interfaces, allowing users to abstract modules. Every new feature was designed
to play well with the existing implementations of effects and handlers.

The comparison of effects and modules point out several commonalities.
First, both can be abstracted by defining their signatures. Second, users
of an effect or module only depend on its signature rather than an actual
implementation. And third, the definition of handlers and modules share a
common structure. Thus, the concepts of effects and modules offer potential
for further unification.

2.3.2 Key Challenges

The first challenge arises from the general concept of modules. There is no
single definition of all characteristics that make up a module. The terms
modules and modularity are broadly used in literature. As a consequence,
module systems tend to vary in their scope and functionalities. Thus, the
design of a module system involves many cross-cutting decisions.
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Another possible pitfall comes from comparing modules and effects too
superficially. Although their definitions share many similarities, they serve
different purposes. Modules are useful to abstract behavior while algebraic
effects have an impact on the control flow of a program. Also, there
are different limitation when it comes to their signature. For instance,
effect signatures cannot contain higher-ordered functions, in order to prevent
capabilities from escaping. However, module interfaces can define such
operations. It is important to keep these different uses-cases in mind.

A more practical problem originates from the compiler itself. The
introduction of new language features is always reflected with changes in the
compilation pipeline. This includes the handling of new keywords and syntax
rules as well as modifications of the internal representation of a program.
Modules offer programmers to distribute their definitions over several distinct
scopes. Thus, algorithms involving the resolution of names have to consider
additional locations. Unfortunately, the original compiler design did not
account for these scenarios.
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Chapter 3

Application

This chapter supplements the previously described concepts with practical
examples. Modules can serve multiple purposes: on a structural level, a module
can act as container to organize and reuse code (Sec. 3.1). More advanced
applications of modules involve their abstraction using interfaces (Sec. 3.2).
Finally, effectful programs can utilize modules to complement effects (Sec.
3.3). The following code examples serve as motivation for the design of Effekt’s
module system in the next chapter (Chp. 4).

3.1 Basic Usage
The basic usage of modules involves them as units to collect code.
Traditionally, a new language feature is introduced with a program simply
printing the phrase "Hello World" (Sec. 3.1.1). This illustrates the syntax to
define modules. Besides from functions, a module can also contain definitions
of other modules (Sec. 3.1.2). Finally, code reuse is facilitated through
imports (Sec. 3.1.3). Although these examples are rather trivial, they form
the foundation for later applications.

3.1.1 Hello World

In their simplest use-case, modules can serve as namespaces. Figure 3.1 shows a
hello world program written in Effekt, using the new module features. The first
usage of the keyword module defines the name of the top-level module, which
contains all definitions in the outer scope of the file. Next, the module keyword
is used again, but this time it defines a scope delimited by { }. All definitions
inside those delimiters are members of the module. In this case, Hello contains
only one member function, defined with the def keyword. Finally, there is

15
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1 // (1) Source Module
2 module examples/mods
3

4 // (2) User Module
5 module Hello {
6 def world() = {
7 println("Hello World!")
8 }
9 }

10

11 def main() = {
12 // (3) Module Call
13 Hello:world()
14 }

Figure 3.1: Hello world program written in Effekt using modules.

a top-level function named main, which serves as main entry point for the
execution. This function uses the module call syntax (:) to interact with the
member function world from the module Hello. Executing the code above
will print the familiar phrase Hello World! to the console. This example
illustrates how users can directly interact with modules.

There are two kinds of modules, named source modules and user modules. A
source module represents the entirety of an input source, e.g. a file. Thus, they
serve as container for all top-level definitions. Their names follow a naming
scheme borrowed from unix paths and can contain multiple name segments. A
user module offers a more lightweight alternative to source modules, because
their existence is not linked to a physical file. Thus, user modules come at
virtually no cost. Both variants of modules provide a fresh environment for
names.

3.1.2 Nested Modules

A module might also contain the definition of other modules. Figure 3.2 shows
a nested module. Programmers can use the module keyword inside the scope
of another modules to define a nested module. In this example, the definition
of Bar is placed inside the scope of Foo, thus making Bar a child of Foo. Bar’s
member function ask is implemented by delegating the call to Foo’s answer
function. Top-level functions like main can chain consecutive module calls to
reach members of nested modules. Calling the main function of this example
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1 module examples/nest
2

3 module Foo {
4 def answer(): Int = 42
5

6 module Bar {
7 def ask(): Int = answer()
8 }
9 }

10

11 def main() = {
12 println(Foo:Bar:ask())
13 }

Figure 3.2: Example of nested modules.

will write the number 42 to the console. Module definitions can appear on the
top-level as well as inside other modules.

Modules can access definitions from their parent scopes. A nested module
can directly refer to the members of their parent without using the module
call syntax. This resembles the reference of top-level functions, which can also
be called without supplying the name of a module. Programmers can reach
definitions inside nested modules by chaining the names with the : character.
Thus, modules can be indefinitely nested and their members are still reachable
from the global scope.

3.1.3 Importing Modules

A source can reuse code from other sources. Programmers can load definitions
from another source into the current scope by importing the corresponding
source module. Imported modules become dependencies of the current scope.
Thus, import statements determine the order in which modules are compiled.

1 module examples/a
2

3

4 def answer(): Int = 42

(a) Module A

1 module examples/b
2 import examples/a
3

4 def ask(): Int = answer() * 2

(b) Module B

Figure 3.3: Importing source modules.
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Figure 3.3 demonstrates the usage of the import syntax . The left side of
the figure contains exemplary code of a small utility module. It defines and
implements a single function named answer. Module B wants to reuse this
definition. Thus, the developer of module B imports module A with the
import keyword, followed by the qualified name of the module. Afterwards,
the implementation of ask can call answer as part of its computation.

The compiler uses source modules to facilitate separate compilation. A
module and one of its dependencies might import the same source. In this
case, the shared source is only compiled once. Also, modules that are neither
a direct nor transitive dependency are not processed at all. Thus, the compiler
treats source modules as fine-grained compilation units.

3.2 Abstraction
Users can abstract modules with interfaces. This mechanism separates the
implementation of a module from its specification. Interfaces only declare the
signatures of operations. Thus, in order to conform to an interface a module
has to provide matching implementations (Sec. 3.2.1). Programmers can use
this technique with user modules as well as source modules (Sec. 3.2.2). In
the later case, top-level definitions provide the implementation for the interface
members. Thus, both kinds of modules can implement interfaces.

3.2.1 Module Interfaces
Interfaces define a set of operations. An interface specifies the signatures
of its members. This allows developers to provide abstract descriptions
of behavior. Thus, users of an interface do not depend on a specific
implementation. Modules and interfaces share a many-to-many relationship.
Various implementations of the same interface can coexist in a program and
one module might implement multiple interfaces.
Figure 3.4 depicts the definition, implementation and usage of a module
interface. Programmers can use the interface keyword to define interfaces,
like Worker. Interface definitions are only permitted on the top-level of a file.
The body of such an definitions can contain multiple signatures of operations,
declared with def. A module can implement interfaces with the implements
keyword. This obligates the module to provide an implementation for each
member of the interface. In this example, the module Foo conforms to the
interfaces Worker. Functions can declare module parameters using the with
keyword, followed by curly braces containing the names and types of these
parameters. The function work defines a single module parameter named mod,
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1 module examples/abstract
2

3 interface Worker {
4 def bar(): Int
5 def baz(): Int
6 }
7

8 module Foo implements Worker {
9 def bar(): Int = 40

10 def baz(): Int = 2
11 }
12

13 def work() with { mod: Worker }: Int = {
14 mod:bar() + mod:baz()
15 }
16

17 def main() = {
18 println(work() with Foo)
19 }

Figure 3.4: Definition, implementation and usage of a module interface.

bound to the type Worker. Thus, the body of this function can interact with
the interface members using the module call syntax. The implementation of
Worker is selected at the call-side. This is demonstrated in the function main.
Here, the module Foo is passed as an argument to the call of work using the
with keyword. Therefore, this invocation returns the integer 42, which is then
printed to the console.

Interfaces are a crucial tool for information hiding. Rather than calling
module members directly, programmers can specify an interface that contains
the required operations. Thus, client code can rely on a general description
of a functionality. This allows to decouple components and to shield
implementation details from the outside. Programmers can use interfaces to
establish a boundary between modules and their users.

3.2.2 Top-Level Implementation

Source modules also can implement interfaces. Since top-level definitions are
members of a source module, they can be used to fulfill the requirements of an
interface. Similar to user modules, the declaration of source modules can have
implementation clauses. Thus, interfaces can abstract both kinds of modules.
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1 module examples/abstract2
2 implements Worker
3

4 interface Worker {
5 def bar(): Int
6 def baz(): Int
7 }
8

9 def bar(): Int = 40
10 def baz(): Int = 2
11

12 def work() with { mod: Worker }: Int = {
13 mod:bar() + mod:baz()
14 }
15

16 def main() = {
17 println(work() with /examples/abstract2)
18 }

Figure 3.5: Source module implementing an interface using top-level
definitions.

Figure 3.5 depicts a source modules that implements an interface. The
workflow follows the same pattern as in the previous example. But this time,
the implementations of bar and baz are declared on the top-level. Consumers,
like the function work, remain unaffected from these changes. They still depend
on the same interface definition. Programmers can pass source modules as
arguments by referencing their name, prefixed with an additional / character.
This prefix is needed to distinguish between the names of user and source
modules. The behavior of this example is exactly the same as the one of
Figure 3.4.

3.3 Effectful Programming

The following sections demonstrate applications of modules in effectful
programs. So far, the previous examples did not use effects at all. Sometimes,
an effect signature can be used in the same places as an interface (Sec. 3.3.1).
Therefore, it is important to understand which use-cases should favor interfaces
over effects and vice versa. But there are also scenarios that require the use of
interfaces. For instance, only an interface is allowed to specify operations with
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functional parameters (Sec. 3.3.2). This mechanism can be used to switch
different handler strategies.

3.3.1 Effects vs Interfaces

In some cases, effects and interfaces can be used interchangeably. The syntax
to define an interface or effect follows nearly identical rules. Programmers
might face the question which of the two should be used, because the
difference between both might narrow down to a single keyword. However,
the distinction becomes quite clear when it comes to their implementation.
Handlers are defined locally inside functions, while modules are available from
the global scope. Also, effect handlers have the ability to alter the control
flow, which modules cannot do.

1 module examples/eff
2

3 effect Worker {
4 def bar(): Int
5 def baz(): Int
6 }
7

8 def work(): Int / {Worker} = {
9 bar() + baz()

10 }
11

12 def main() = {
13 try { println(work()) }
14 with Worker {
15 def bar() = resume(40)
16 def baz() = resume(2)
17 }
18 }

Figure 3.6: Usage of an effect to model the same logic from Figure 3.4.

Figure 3.6 implements the same logic as 3.4, but uses an effect instead of
an interface. In this example, the definition of Worker now uses the effect
keyword instead of interface. Thus, modules can no longer implement the
type Worker. The next change occurred in the signature of work. Rather
than declaring a module parameter, the effect Worker is now annotated to the
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return type. As a consequence, the member operations bar and baz can be
called directly. Executing this code will still lead to the same result.

In general, programmers should use interfaces to abstract behavior. Calling
an effect operation might abort the execution of a function, depending on the
handler. For instance, if the implementation of bar is changed to bar() =
40, executing the program will no longer print the number 42, but 40. Thus,
an interface forces its implementation to provide an actual result whenever an
operation is called. Effects and interfaces communicate different intends.

3.3.2 Modules as Handlers
An interface can declare signatures of higher-ordered functions. This ability is
unique to interfaces, because effect operations are forbidden to have functional
parameters. They could allow a capability to escape the current scope.
Whereas, modules can use this feature to provide handler functions. Such
a function is a common pattern in Effekt to facilitate the reuse of handlers.
Programmers can use modules and interfaces to specify and provide effect
handlers.

Figure 3.7 shows an interface that allows to handle effects through its
operations. First, two effects Add and Lit are defined, to model the
computation of terms. The interface Calc defines two corresponding operations
that take an effectful function as a parameter. Note that, the operations itself
declare no effects. Next, the module Foo provides an implementation for this
interface. The effect handlers are defined inside handleAdd and handleLit.
They are used to handle the effects from their input parameter. Then, the
function work consumes the interface Calc in form of a module parameter.
This allows programmers to compose the handlers from the interface. Calling
work with the implementation of Foo leads to the computation of the term 40
+ 2 and prints the result 42 to the console.
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1 module examples/mods/handler
2

3 effect Add(l: Int, r: Int): Int
4 effect Lit(x: Int): Int
5

6 interface Calc {
7 def handleAdd { f: () => Unit / {Add} }: Unit
8 def handleLit { f: () => Unit / {Lit} }: Unit
9 }

10

11 module Foo implements Calc {
12 def handleAdd { f: () => Unit / {Add} }: Unit = {
13 try { f() }
14 with Add { (l, r) => resume(l + r) }
15 }
16

17 def handleLit { f: () => Unit / {Lit} }: Unit = {
18 try { f() }
19 with Lit { (x) => resume(x) }
20 }
21 }
22

23 def work() with { calc: Calc } = {
24 calc:handleLit { calc:handleAdd {
25 println(do Add(do Lit(40), do Lit(2)))
26 }}
27 }
28

29 def main() = {
30 work() with Foo
31 }

Figure 3.7: Using a module interface to handle effects.
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Chapter 4

Design

This chapter elaborates the design of modules for Effekt. The specification
of the module system is connected with a series of design decisions (Sec. 4.1).
Those shape the strengths and weaknesses of modules in Effekt. Thus, each
decision comes with a number of benefits and trade-offs. The design presented
in this chapter is by no means final. There is room for further improvements
that could consolidate the interactions between effects and modules (Sec, 4.2).

4.1 Design Decisions
This section explores the design space of modules in combination with effects.
First, we motivate our pick to make modules second-class (Sec. 4.1.1). Next,
we discuss the typing of modules in Effekt (Sec. 4.1.2). This requires to
answer the question, when module types are considered compatible. Finally,
we examine mutable state in modules and the problems that might arise from
it (Sec. 4.1.3). Altogether, the design aims to integrate modules seamlessly
with existing language features of Effekt.

4.1.1 First-Class vs. Second-Class Modules
Entities of programming languages are categorized as either first-class or
second-class citizens. Strachey[24] coined these terms in the 60’s to contrast
real numbers and procedures in ALGOL. The categorization of an entity as
either first- or second-class expresses in which positions it can be used. In
order to become a first-class citizen an object must support to be:

1. passed as argument

2. returned from a function

25
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3. assigned to variables

Usually, the primitive data types like Boolean, Int and Double fulfill these
requirements. The usage of second-class entities is more restricted. They
can only appear in argument positions. For example, functions in Effekt are
second-class, since they cannot be stored in variables. The decision whether
a new language construct should be a first- or second-class citizen has a deep
impact on its usage.

The above description suggest that first-class citizens are more powerful
but the question remains if its desirable to categorize modules as first-class
constructs. Osvald et al.[17] pick up this issue. Since first-class entities
can be assigned to variables, they might escape their defining scope. This
ability becomes a disadvantage when the object represents a capability. Also
strict lifecycle protocols, e.g. for files or network connections, become harder
to overlook. Second-class entities avoid these problems because they cannot
escape their scope. As a consequence, only a second-class entity can capture
other second-class entities. Otherwise, first-class objects would be able to leak
them. Depending on the use-case it is favorable to deal with second-class
rather than first-class objects.

We decided to make modules in Effekt second-class. Capabilities play a
huge role in Effekt’s lightweight way of handling effects. It comes naturally
to design its module system with that fact in mind. Implementing modules
as second-class entities brings them closer to capabilities. However, this
decision also has its downsides. ML-style functors can no longer exist in
this setting, because modules are not permitted as return value. This is a
considerable caveat of this approach, since functors are essential constructs
in other module systems. In the end, the similarities between modules and
capabilities underline the need for both to fall in the same category.

4.1.2 Nominal vs Structural Typing
The next question arises from the compatibility of module types. There are

two common approaches to tackle this problem: nominal typing and structural
typing. Figure 4.1 depicts pseudo code for both scenarios. The left side (a)
demonstrates nominal typed modules. In this setting, users define module
types in form of interfaces. They are identified by their name and modules
have to explicitly declare what types they intend to implement. Functions
also uses these types to declare a module parameter. In this example, both
implementations Foo and Bar could be passed as argument to work, because
they implement Worker. Alternatively, the type of a module can be determined
by its structure (b). In this case, a module type is defined by the set of



4.1. DESIGN DECISIONS 27

1 interface Worker {
2 def baz(): Int
3 }
4

5 module Foo: Worker {
6 def baz(): Int = 42
7 }
8

9 module Bar: Worker {
10 def baz(): Int = 0
11 }
12

13 def work(mod: Worker)

(a) Nominal typed modules

1

2

3

4

5 module Foo {
6 def baz(): Int = 42
7 }
8

9 module Bar {
10 def baz(): Int = 0
11 }
12

13 def work(mod: Foo)

(b) Structural typed modules

Figure 4.1: Pseudo-code for modules in a structural (a) and nominal (b) typed
setting.

member signatures. Thus, the types of Foo and Bar on the right side would be
considered equal. Both contain exactly one member function with the same
signature, although their implementations differ. In this scenario, module
parameters directly refer to a module, like the parameter mod of work. Still,
Bar can be used as argument to call work, because its type is equal to the one
of Foo. Modules types can either be defined explicitly or implicitly.

Structural typing is deemed to be more flexible than the nominal
approach[5][10]. In a structural typed setting, programmers are exempt
from the burden to maintain separate interface definitions alongside their
implementations. Also, retroactive abstraction is easier to achieve. Existing
modules can automatically conform to newly introduced types, without
touching their implementation. This is especially desirable in cases where the
source the of a module is not available to the user. However, this advantage
can also turn into a downside. The types of modules could accidentally
correspond to each other, even tough they serve different purposes. Also,
correctly assigning blame for the missing conformance between two types is
a tough challenge in the structural typed setting[16]. Thus, the flexibility
surrounding structural types is a double-edged sword.

Modules in Effekt are nominal typed. On the one hand, the explicit use
of module types communicates the intend of developers more clearly. On the
other hand, this increases the amount of boilerplate code related to modules.
However, nominal typed modules fit better in the existing nominal typing for
effects.
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4.1.3 Stateful Modules

Commonly, modules can bear state. Besides from functions, modules might
define variables to store data. In this case, we speak of stateful modules. As
already mentioned, altering such state as part of a computation is considered
a side-effect. Since modules are globally available in Effekt, this would grant
uncontrolled access to their state. Thus, stateful modules could potential
introduce additional side-effects.

We decided to forbid mutable state in modules generally. This decision
poses a significant drawback to the usability of the module system. One can
think of various use-cases that require modules to manage state, e.g. a logger
that buffers messages or global counters. For now, those applications are
beyond the scope of modules in Effekt. This is a tough limitation of the
module system but reversing this choice would come at cost of the integrity of
the languages. Allowing users to trigger unspecified side-effects would diminish
previous efforts of the effect system. Therefore, modules have to renounce from
the use of mutable state in favor of upholding effect-safety.

4.2 Further Improvements
The presented design marks the first iteration of modules in Effekts. As such,
the module system is not finalized and can be extended in the future. For
instance, the overlaps between module and effect signatures invite to streamline
their definitions (Sec. 4.2.1). At least, modules could act as alternative handler
implementations. Also, local module definitions could possibly compensate for
some use-cases limited by the current design (Sec. 4.2.2). These ideas could
serve as starting points for future researches on the topics of modules and
effects.

4.2.1 Unifying Modules and Capabilities

Currently, modules cannot implement effect signatures. This might be
surprising, since the definition of effect operations is more restricted than their
counterparts in interfaces. However, it would be difficult to incorporate the
control-flow characteristics of handlers into modules. Nevertheless, a module
could still replace a handler that uses the resume keyword in all operations.
Potentially, modules could serve as capabilities in some cases.

Figure 4.2 depicts a scenario in which a module implements an effect
signature and is used as handler. First, this example defines an effect signature
named Worker. This signature is then implemented by the module Foo,
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1 effect Worker {
2 def bar(): Int
3 def baz(): Int
4 }
5

6 module Foo handles Worker {
7 def bar(): Int = 40
8 def baz(): Int = 2
9 }

10

11 def work(): Int / {Worker} = {
12 bar() + baz()
13 }
14

15 def main() = {
16 try { println(work()) }
17 with Worker by Foo
18 }

Figure 4.2: Pseudo code featuring a syntax to use module as handlers.

illustrated with the fictional keyword handles. This module defines two
member functions, which provide implementations for the effect operations.
The top-level function work serves as an user of the effect. Finally, main tries
to call work. Thus, it must provide a handler for the effect Worker. This
is done by referencing the module Foo, using another new keyword by. The
presented program is intended to be logically equivalent to the example from
Figure 3.6. Therefore, modules could act as handlers that always resume a
function.

The pictured technique swaps conceptual components from effects and
modules. Both concepts are divided into three major parts: their signature,
implementation and consumers. The example above combines a specification
from the world of effects with an implementation from the universe of modules.
This facilitates an interesting new mixture between modules and effects.

4.2.2 Local Modules

The current design does not account for the definition of local modules. Module
implementations can only occur outside of functions. This makes them visible
to all parts of the program. Programmers might want to limit the access
to modules or close their definition over local variables or even capabilities.
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In fact, the syntactical structure of handlers is already close to the one of
modules. Theoretically, there is nothing that would prevent the introduction
of local modules.

1 effect State {
2 def get(): Int
3 def set(val: Int): Unit
4 }
5

6 interface Counter {
7 def next(): Int
8 def reset(): Unit
9 }

10

11 def work() with { c: Counter } = ...
12

13 def main() = {
14 var state = 0
15

16 try {
17 work() with Counter { // Local module
18 def next(): Int = {
19 val n = do get()
20 do set(n + 1)
21 return n
22 }
23

24 def reset(): Unit = {
25 do set(0)
26 }
27 }
28 } with State { // Handler
29 def get() = resume(state)
30 def set(n: Int) = { state = n; resume(()) }
31 }
32 }

Figure 4.3: Pseudo code for the possible usage of local modules.

Figure 4.3 depicts a possible syntax and use-case for local modules. This
example begins with the definition of an effect State and an interface Counter.
They are followed by a function with a module parameter and an arbitrary
implementation. So far, the existing language features are sufficient to
implement that logic. This changes when it comes to the function main. The
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try/with statement is used to provide an handler for the effect State. This
facilitates a capability in the scope of try, which allows to call the operations
defined in State. However, work requires a module parameter but not an
effect. Instead of passing an existing implementation of the interface Counter
to work, a local module is defined. Thus, the with keyword is followed by
the name of an interface to which the local module should conform. This
creates a new scope where the implementation of Worker is placed. The
implementations of the interface members invoke operations from the State
effect. Thus, the local module captures the capability introduced by the
handler of State. This example also highlights the compatibility between
modules and capabilities.

Capturing a capability in a local module definition is safe, since both
are second-class entities. There is no chance, that the local module might
escape the scope. Thus, its definition can safely close over other second-class
objects, such as capabilities. Allowing users to combine modules and
effects/capabilities opens up new areas of application for both constructs.
Implementing local module definitions in Effekts, could potentially make up
for the loss of functors and stateful modules.
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Chapter 5

Implementation

This chapter summarizes the implementation of modules into the compiler
of Effekt. The compilation process is divided into multiple stages. Different
phases of the compiler handle distinct tasks, such as type-checking or code
generation (Sec. 5.1). Internally the entities of a program are represented with
symbols (Sec. 5.2). Thus, the different components of the module system, like
interfaces and user-defined modules, correspond to different classes of symbols.
The following sections briefly summarize the modifications of the compiler.

5.1 Compilation Pipeline

BackendFrontendParser Generator

(1) (2) (3) (4)

Figure 5.1: Simplified compiliation pipeline.

The pipeline of the Effekt compiler (Fig. 5.1) can be divided into four
phases. They start with reading the source files and end with the generation
of JavaScript code. Each phase receives the output of the preceding stage and
augments it with additional information. The four phases can be summarized
as:

1. Parser (Sec. 5.1.1): Reads the source text and transforms it into an
Abstract Syntax Tree (AST).

2. Frontend (Sec. 5.1.1):: Receives the AST and creates matching symbols.

33
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3. Backend: Combines information from the AST and symbols to create a
core language representation.s

4. Generator: Transforms the core tree into output files, e.g. JavaScript or
Scheme code.

The following sections briefly explains each step of the compilation process.

5.1.1 Parser

ModuleDecl: examples/abstract

Interface: Worker

Op: bar Op: baz

ModuleDef: Foo Fun: work Fun: main

Fun: bar Fun: baz

Figure 5.2: Simplified AST representing the example from Figure 3.4.

This phase is responsible for translating the textual representation of a
program into a typed data structure. These structures are called abstract
syntax trees (AST). Figure 5.2 depicts a simplified version of such an AST,
representing the source code from Figure 3.4. The root of this tree is the
module declaration from the top of the file. This data type holds a list of child
nodes, representing the definitions from the top-level. For instance, one of this
children is the interface definition of Worker, containing the signatures of bar
and baz. The definition of the module Foo also contains elements with the
name bar and baz. However, those definitions use a different data type. These
types are used to distinguish between the signatures and implementations
of functions. This AST supplies the consecutive pipeline with all required
information about the input program.

5.1.2 Frontend
The frontend of the compiler process the AST and validates the semantics
of a program. A major part of this phase is the Namer. This stage of the
compiler generates symbols for each entity in the AST, e.g. modules. It
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also resolves module calls, like Foo:bar(), and references, like module types
mentioned in implements clauses. Aside of this, the Namer phase populates
the module symbols, which now contain the types and terms defined in their
scope. This information is crucial to the following stage, the Typer. At this
point, the implementation of a module is type-checked. Thus, the conformance
of modules to their declared interfaces is verified. Following phases can lookup
the symbols defined in the frontend through a global database.

5.1.3 Backend

The backend phases transform the source AST into a core language
representation. This allows the compiler to perform optimizations of the input
program. Thus, the core language serves a different purpose than the one
used to write the source code. However, these phases of the pipeline remained
largely unaffected by the implementation of modules. Solely the core AST
was extended by one additional node, representing a user module. At this
point, interfaces play no role, because they are not represented in the output
language. The result of the backend phase is a core AST, which is handed over
to the generator.

5.1.4 Generator

The generator translates the core AST into JavaScript[25] code. Compiling the
content of Figure 3.4 produces the output shown in Figure 5.3. The first line
imports the compiled standard library and stores its content in $effekt. This
is exemplary for the translation of module imports. Next, a variable named
$example_abstract is defined as an empty object. This variable represents the
source module and will be populated and exported at the end of the file. User
modules, like Foo, are computed from an anonymous function, which contains
the module members as local definitions. The result of this function is also an
object that exports the members. Note, that some definitions are exported
under multiple names. This is due to them being used to implement an
interface. Module parameters, like the one of work, become regular parameters
in JavaScript. In the body of this function, the interface operation op$bar is
called. The compiler prefixes the names of interface operations with op$ to
avoid naming clashes. Finally, the function main calls work and supplies the
instance of Foo as an argument. This generated JavaScript code is logically
equivalent to input program, written in Effekt.
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1 const $effekt = require('./effekt.js')
2

3 var $examples_abstract = {};
4

5 var Foo = (function () {
6 var module = {}
7

8 var $Foo = {};
9

10 function bar() {
11 return $effekt.pure(40)
12 }
13

14 function baz() {
15 return $effekt.pure(2)
16 }
17

18 return module.exports = Object.assign($Foo, {
19 "bar": bar,
20 "baz": baz,
21 "op$bar": bar,
22 "op$baz": baz
23 })
24 })()
25

26 function work(mod) {
27 return (mod.op$bar()).then((tmp73) =>
28 (mod.op$baz()).then((tmp74) =>
29 $effekt.pure($effekt.infixAdd(tmp73, tmp74))))
30 }
31

32 function main() {
33 return (work(Foo)).then((tmp70) => $effekt.println(tmp70))
34 }
35

36 return module.exports = Object.assign($examples_abstract , {
37 "main": main,
38 "Foo": Foo,
39 "work": work
40 })

Figure 5.3: JavaScript code generated from Figure 3.4 by the compiler
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5.2 Symbols

BlockSymbol

ModuleSymbol

ModuleParam

Param

ModuleType

InterfaceType

Module

SourceModule UserModule

Figure 5.4: Simplified class-hierarchy of module-related symbols.

Compiler symbols represent instances of language entities. Usually each
definition in the source code corresponds to the creation of a symbol, e.g.
the line module Hello { } will be translated into a UserModule symbol with
name "Hello" and a fresh id. As part of this thesis, the Effekt compiler
was extended with additional symbols (Figure 5.4). A ModuleType (5.2.1)
represents a module interface with a list of member operations. The trait
ModuleSymbol (5.2.2) generalizes all second-class entities related to modules.
This includes the SourceModule (5.2.3) and UserModule (5.2.4) symbols which
represent sources and user-defined modules respectively. Finally, functions that
take a module as parameter gain access to the members via a ModuleParam
(5.2.5) symbol. The compiler uses those symbols to collect and distribute
information about modules.

5.2.1 Module Type
There are similarities between the design of the ModuleType and UserEffect
symbols. Both extend the TypeSymbol trait, have a user-defined Name and
carry a list of Method symbols representing body-less function definitions. In
fact, Method symbols are always owned by either a ModuleType or UserEffect
symbol. This highlights the conceptual connection between interfaces and
effect signatures. The ModuleType and UserEffect symbols mainly differ in
two points: First, the ModuleType symbol also extends the InterfaceType
trait. Second, effects can have type parameters which are not supported by
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modules yet. While the second point might become obsolete when future
versions of the compiler allow generic modules, the first difference presents
the bigger hurdle for the unification of interfaces and effects. This is mainly
due to the call-side handling of modules and effects. While members of a
ModuleType are accessed through a user-defined module parameter, effect
members are called on implicit passed capabilities managed by the compiler.
Those distinctions require different handling of both symbols in various parts
of the compiler. It is desirable to merge ModuleType and UserEffect symbols
in the future to narrow the gap between modules and effects further.

5.2.2 Module Symbol

Every symbol which can be used as a module implements the ModuleSymbol
trait. Therefore all symbols that can be passed as a module
argument must implement that trait. Namely, this includes module
parameters (ModuleParam), source modules (SourceModule) and user modules
(UserModule). Thus all symbols that inherit from ModuleSymbol are
second-class entities. Besides the usual requirement for symbols inside the
Effekt compiler, a ModuleSymbol must provide a method load():Scope
which (re)creates a scope, containing all member symbols of the module.
Having a common trait shared by all kinds of modules helps to simplify the
resolution of module members.

The abstract class Module implements shared logic for the SourceModule
and UserModule symbols. Compared to ModuleParam, the classes of
SourceModule and UserModule are more complex. Sources and user-defined
modules can implement interfaces and export symbols from their scope, while
a module parameter only provides access to the members of an interface.
A SourceModule or UserModule exports symbols from a scope with the
save(scp:Scope) method. Also, they need to store a list of implemented
interfaces to provide the type-checking phase with sufficient information. Both
aspects are covered by the Module base class, allowing the compiler to handle
source and user modules indifferently.

All symbols representing actual modules are categorized as terms in the
Effekt compiler. ModuleSymbol extends BlockSymbol which in turn is a
sub-type of TermSymbol. Thus, module symbols life in a different namespace
than types. Programmers can define, e.g. an user module and an interface
with the same name without facing a name clash. The compiler will always be
able to figure out if a given name references a ModuleType or ModuleSymbol.
The ModuleSymbol trait integrates modules into the type-hierarchy of term
symbols.
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5.2.3 Source Module

The SourceModule symbol sits on top of the module hierarchy. The notation
of a SourceModule existed prior this work on the compiler. Before modules
were introduced into Effekt, the compiler already recognized source files as a
single unit. However at this time, sources were neither first- nor second-class
citizens of the language. They were mainly used to organize the compilation
process and could only be used as imports. Many implementation details
of the SourceModule class are carried over from previous versions. The main
contribution to this symbols is their integration into the new module hierarchy,
elevating them to second-class entities and allowing interface implementations.

The compiler represents every processed source with different instances of
SourceModule symbols. Such a symbol contains all top-level declarations of
a file. The name of a SourceModule is either explicitly declared using the
module keyword in the first line of the file or implicitly derived from the file’s
name. A key feature of a SourceModule is the ability to import other sources.
Those imports are represented as a list of SourceModule instances. Thus the
relation between different sources forms a top-down tree, where the parent
node holds a reference to its children. The load() method of source modules
recursively iterates over all children. This results in a scope that contains all
(transitively) imported symbols, but also accounts for shadowing.

5.2.4 User Module

The symbols of UserModule and SourceModule cover different use-cases for
modules. Programmers can group multiple implementations of the same
interface in one source with user modules. A UserModule comes with virtually
no overhead and can access or shadow symbols from their parent scope. This
makes UserModule a cheap alternative to SourceModule.

The UserModule is a child module with a parent of type Module. Since
there are only two subclasses of Module, the parent hierarchy of a UserModule
will eventually end with a SourceModule. This is due to the fact, that
user-defined modules can always be associated with a single source containing
their definition. The load() method of a UserModule walks up the parent
chain. Thus, the scope is successively populated and respects the nesting of
user modules. The parent structure of a UserModule distinguishes this symbol
from other module symbols.
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5.2.5 Module Parameter
Since modules in Effekt are second-class citizens, programmers must be able
to pass them around as an argument. Thus, the compiler needs to represent
module parameters in form of a ModuleParam symbol. Such a parameter
is always linked to a ModuleType. Thus, the class ModuleParam implicitly
integrates ModuleType symbols into the type-hierarchy of ModuleSymbol.

ModuleParam implements two important traits: First, it is a subtype
of Param. This trait is used to model the parameter section of functions.
Second, it is also a ModuleSymbol, allowing users to pass module parameters as
arguments to subordinated function calls. The load() method of this symbol
does not need recursive calls in order to restore the scope. It is sufficient
to extract the Method symbols from the bound ModuleType. Thus a module
parameter can be seen as a placeholder for an actual module.
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Conclusion

Modules and effects tackle common problems of complexity in software
development. While modules provide a tool to structure and organize
the components of an application, effects offer additional control over the
program’s flow. Both features complement each other and can coexist in
one language. This finding is underlined by the integration of modules
into the programming language Effekt. Furthermore, the concepts of effects
and modules overlap in many instances. The definition of signatures,
implementations and consumers of effects and modules follow a common
pattern. However, they differ in their use-cases. Nevertheless, this raises
the interest in possible combinations of modules and effects.

A main characteristic of Effekt’s module system are second-class modules.
This design decision is motivated by the implementation of effects in form of
capabilities. Because those entities are also second-class, first-class modules
would introduce additional barriers. However, the price of this choice is the
exclusion of ML-style functors from the language. This eliminates a central
construct for the composition of modules. Still, Effekt’s module system can
cover a variety of use-cases, including: abstraction, separate compilation and
information hiding.

The current implementation of modules serves as starting point for further
research. While the existing mechanism allow modules to provide effect
handlers through interfaces, additional language features might desirable. This
could include an uniform definition of module and effect signatures. Also,
support for local module definitions can come handy. This would allow
programmers to close a module implementation over capabilities, opening up
new doors for possible research topics. Perhaps such a language feature could
even compensate for the loss of functors. Finally, the potential of effects,
modules and their combination is far from being exhausted.
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