
Dynamic Wind for Effect Handlers
DAVID VOIGT, University of Tübingen, Germany

PHILIPP SCHUSTER, University of Tübingen, Germany

JONATHAN IMMANUEL BRACHTHÄUSER, University of Tübingen, Germany

Effect handlers offer an attractive way of abstracting over effectful computation. Moreover, languages with

effect handlers usually statically track effects, which ensures the user is aware of all side effects different parts

of a program might have. Similarly to exception handlers, effect handlers discharge effects by locally defining

their behavior. In contrast to exception handlers, they allow for resuming computation, possibly later and

possibly multiple times. In this paper we present a design, formalization, and implementation for a variant of

dynamic wind that integrates well with lexical effect handlers. It has well-defined semantics in the presence of

arbitrary control effects in arbitrary places. Specifically, the behavior of capturing and resuming continuations

in the pre- or postlude is well-defined and respects resource bracketing. We demonstrate how these features

can be used to express backtracking of external state and finalization of external resources.

CCS Concepts: • Software and its engineering→ Control structures; Compilers; • Theory of computa-
tion→ Type theory; Control primitives.

Additional Key Words and Phrases: control flow, lexical effect handlers, resource management, finalization,

continuations, multiple resumption, effect systems, capabilities

ACM Reference Format:
David Voigt, Philipp Schuster, and Jonathan Immanuel Brachthäuser. 2025. Dynamic Wind for Effect Handlers.

Proc. ACM Program. Lang. 9, OOPSLA2, Article 377 (October 2025), 41 pages. https://doi.org/10.1145/3763155

1 Introduction
Practical programs necessarily interact with the real world — they have side effects. Moreover, parts

of a program interact with other parts of the program in an effectful way, for example through

mutating a shared reference cell, or by throwing an exception. Due to their non-local nature, side

effects make it harder to reason about programs: one has to take into account the context in which

a program runs in order to make sense of its behavior.

A type and effect system [Lucassen and Gifford 1988] tracks not only the types of values in

a program, but also the side effects of computations. This way, programmers immediately see

which side effects each part of a program can have. Effect safety means that a program at runtime

indeed has at most those effects assigned to it by the static effect system. This way, when trying to

understand a program, it is clear which parts of the context are relevant and which are not.

Effect handlers are a language feature that allow for the local encapsulation of side effects

and [Plotkin and Pretnar 2009, 2013]. In analogy to exception handlers, effect handlers locally

discharge an effect, which can therefore not affect the program outside the handler — they delimit

the context of an effect.

Authors’ Contact Information: David Voigt, University of Tübingen, Germany, david.voigt@uni-tuebingen.de; Philipp Schus-

ter, University of Tübingen, Germany, philipp.schuster@uni-tuebingen.de; Jonathan Immanuel Brachthäuser, University of

Tübingen, Germany, jonathan.brachthaeuser@uni-tuebingen.de.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART377

https://doi.org/10.1145/3763155

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

https://orcid.org/0009-0003-0140-6379
https://orcid.org/0000-0001-8011-0506
https://orcid.org/0000-0001-9128-0391
https://doi.org/10.1145/3763155
https://orcid.org/0009-0003-0140-6379
https://orcid.org/0000-0001-8011-0506
https://orcid.org/0000-0001-8011-0506
https://orcid.org/0000-0001-9128-0391
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://doi.org/10.1145/3763155

377:2 Voigt, Schuster, and Brachthäuser

In contrast to exception handlers, however, effect handlers can resume computations, potentially

at a later time and even multiple times. Therefore, they make it possible to express and abstract

over advanced patterns of control flow. In other words, they allow programs to switch between

contexts.

Generally, programs acquire and release external resources through which they interact with the

real world. These external resources are part of a larger context outside the program. By their very

nature, they are stateful. In some scenarios, context switches should also back up and restore the

state of these external resources.

Resource safety means that a program may only interact with external resources after it has

acquired them, but before it has released them. Moreover, resources should be released eventually.

The safe management of resources in presence of exceptions requires special care. For this reason,

different mechanisms have been proposed and implemented, for example Resource Acquisition Is

Initialization, try-finally blocks, or defer statements.

In a language with effect handlers, even more general non-local control flow has to be taken into

account. Effect handlers capture the current continuation and potentially resume it later, or even

multiple times. Mechanisms for finalization in presence of exceptions do not account for these.

Abstractly, parts of the external context would have to be saved and later restored. Concretely, if

resources have already been freed beforehand, resuming the program leads to undefined behavior,

when already released external resources, such as file handles, are accessed.

In this paper, we propose a mechanism to improve the state of the art in handling of scarce

resources in presence of general effect handlers. More specifically, in addition to the standard return
clause, we propose to add two optional clauses to effect handlers: a suspend clause and a resume
clause. They allow for user-defined actions to be executed upon unwinding respectively rewinding

the control stack. These actions may release but also re-acquire resources when possible. When

not possible, they allow for safely aborting the program in a controlled way. Together with the

standard return clause these generalize the try-finally construct from exception handlers to

effect handlers.

We formalize our ideas as the formal language System Ξ↬ equipped with a type system and

operational semantics. Furthermore, we show the soundness of System Ξ↬ by proving progress

and preservation. Finally, we state and prove a theorem of resource safety: even in presence of

effect handlers with unrestricted continuation use, including from within finalizers, we guarantee

that active resources are acquired and inactive ones are released. Our approach is complementary

to existing work on statically ruling out undesired interaction between non-linear continuation

use and external resources [Brachthäuser and Leijen 2023; Tang et al. 2024].

In summary, this paper makes the following contributions:

• Calculus: We present a formal calculus System Ξ↬ featuring lexical effect handlers endowed

with resource finalization clauses.

• Type System: We present a type system for System Ξ↬.

• Operational Semantics: We equip System Ξ↬ with operational semantics by defining an

abstract machine for evaluation.

• Soundness: Using the operational semantics and the type system, we prove the soundness,

that is, progress and preservation for System Ξ↬.

• Resource Safety: We state and prove that acquiring and releasing of resources is well-

bracket.

• Implementation: We implement the presented ideas as an extension of the research language

Effekt [Brachthäuser et al. 2020].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:3

This paper is structured into the following sections: In Section 2 we motivate the need for back-

tracking of heap resources and the safe management of external resources by presenting a basic

parser combinator library for the Effekt language. Next, in Section 3 we present System Ξ↬, that

is, its syntax, type system and operational semantics. Additionally, we also prove the soundness of

System Ξ↬ and present the theorem of resource safety. In Section 4 we discuss the practical imple-

mentation of System Ξ↬ in the Effekt language and highlight interesting aspects. We conclude

this paper by presenting related work in Section 6 and summarizing our findings in Section 7.

2 Motivation
In this section, we explain basic usage of effect handlers and then motivate the need for dynamic

wind. We start by building a parser combinator based on effect handlers [Brachthäuser et al. 2020;

Leijen 2016]. We present these examples in Effekt, a language with lexical effect handlers, for which

we have implemented our proposed finalization mechanism.

2.1 The Fail Effect: Modeling Exceptions
When programming with effect handlers, we separate programs that use effects from their context,

which handles the effects. The two interact through a shared interface: the effect signature. Effectful
programs use these effects with the keyword do. For example, we define a function that converts a

character to an integer when it corresponds to a digit and fails otherwise.

effect fail(): Nothing

def digitToInt(char: Char): Int / fail =

char match {

case ’0’ ⇒ 0

. . .

case _ ⇒ do fail()

}

The type of digitToInt not only communicates the types of the parameter and return value but

also that it uses the fail effect.
We handle effectful programs very much in the same way we handle exceptions. For example,

we reify the potentially failing computation into an optional type.

def option[R] { program: () ⇒ R / fail }: Option[R] =

try { Some(program()) }

with fail { () ⇒ None() }

The higher-order function option accepts a program that might fail. When it succeeds, it returns

the result of type R wrapped as Some(result). When it fails, it returns None(). For example,

option { digitToInt(’3’) } results in Some(3).

2.2 The Read Effect: Resuming Computation
Effects generalize exceptions in that handlers have the ability to resume the program with the

result of the effect operation. For example, we can define an effect read that abstracts over reading

from character input streams. Using the read effect operation, we can define a function that parses

digits. Of course, as before, the conversion to an integer might fail.

effect read(): Char

def digit(): Int / {read, fail} = digitToInt(do read())

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:4 Voigt, Schuster, and Brachthäuser

A program can have a set of effects, here for example {read, fail}. They are inferred and

accumulated from subprograms. We can handle the read effect in different ways to feed characters

from different sources. For example from an array of characters.

def feed[R](input: Array[Char]) { reader: () ⇒ R / read }: R = {

var position = 0

try { reader() }

with read { () ⇒
val p = position

if (p < input.size) { position = p + 1; resume(input.get(p)) }

else { resume(’\0’) }

}

}

In the handler feed, we keep track of the current position in the array using a local mutable variable

position. When this position is within the array bounds, we resume with the character at this

position. Otherwise, we resume with the null character, signaling that the end-of-file has been

reached.

2.3 The Fork Effect: Resuming Multiple Times
Effect handlers have the ability to resume more than once, each time with a different value. For

modelling non-deterministic computations, the effect fork can be used. Intuitively, it chooses

between returning true in one world and false in another one. We can use it to choose the

number of times an action should be performed.

effect fork(): Bool

def many { action: () ⇒ Unit / {} }: Unit / fork = while (do fork()) { action() }

While the type of the parameter action indicates no effects, many can still be called with actions

that do have effects, thanks to contextual effect polymorphism [Brachthäuser et al. 2020]. We handle

the fork effect with backtracking search.

def backtrack[R] { program: () ⇒ Option[R] / fork }: Option[R] =

try { program() }

with fork { () ⇒ resume(true) match {

case None() ⇒ resume(false)

case Some(result) ⇒ Some(result)

}

}

Here, we assume the program returns an optional result. To handle the fork effect, we first try to

resume with true, and when we get no result, we resume with false.

2.4 The Parser Effect: Composing Effect Handlers
Having introduced all necessary ingredients, we can combine the effects into a parser effect by

defining an alias for the set containing all three.

effect Parser = {read, fail, fork}

Using the parser effect, we can compose parsers similar to a parser combinator library [Hutton and

Meijer 1998], but in direct style and freely combining it with imperative control flow, local mutable

variables, and other effects — for example, for parsing a sequence of digits into a number.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:5

def number(): Int / Parser = {

var n = 0

many { n = 10 * n + digit() }

return n

}

The function number accumulates the result in a local mutable variable n by using the combinator

many for non-deterministically choosing to continue iteration or to stop. Since many requires the
context to handle the fork effect and digit the read and fail effect, number requires the context

to handle the union of these effects. Of course, it is possible to combine these parsers into larger

ones. For example, for parsing a pair of numbers separated by a non-digit character.

def numbers(): (Int, Int) / Parser = {

val n1 = number()

val _ = do read()

val n2 = number()

return (n1, n2)

}

Finally, we can handle the Parser effect by composing the three previously defined handlers.

def parse[R](input: Array[Char]) { parser: () ⇒ R / Parser }: Option[R] / {} =

backtrack { option { feed(input) { parser() } } }

Given the input of "112 21", running parse(input) { numbers() } results in the pair of integers

(112, 21).

2.5 Backtracking Global State
For the correct behavior of these parsers, it is of vital importance that the position in the array is

backed up and restored upon the second resumption in handler backtrack. In Effekt, as position
is a local mutable variable, this behavior follows naturally. If, however, we use a global mutable

reference to keep track of the position, the parser exhibits wrong behavior.

Using a global mutable heap-allocated reference, running parse(input) { numbers() } with

the same input "112 21" as before, would yield the pair of integers (112, 1). As the reference is
not stack-allocated, it is not automatically captured and restored by the stack unwind and rewind

process process triggered by the backtrack handler and fork effect.

In this paper, we present dynamic wind for effect handlers. To this end, we add two new kinds of

clauses: on suspend and on resume. Using these, we can keep the position in a global mutable

reference, yet have the desired backtracking behavior.

def feedGlobal[R](input: Array[Char]) { reader: () ⇒ R / read }: R = {

val position = ref(0) // a global mutable reference

try { reader() }

with read { () ⇒
val p = position.get()

if (p < input.size) { position.set(p + 1); resume(input.get(p)) }

else { resume(’\0’) }

} on suspend { position.get() }

on resume { p ⇒ position.set(p) }

}

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:6 Voigt, Schuster, and Brachthäuser

1

𝑙1
2

3

𝑙2
4

5

𝐸 𝐾

1

𝑙1
2

3

#𝑙
1
𝑢𝑛𝑤𝑖𝑛𝑑

𝐸

5

𝑙2
4

𝐾

unwind

Fig. 1. During capturing the continuation, the unwinding process is paused to execute the suspend clause of
each traversed handler. For remembering to later continue unwinding, a #l1 unwind frame is pushed onto
the captured continuation K before executing the suspend clause.

Intuitively, the statement in on suspend is executed whenever the computation is suspended,

and the statement in on resume whenever it is resumed. Moreover, the result of executing the

on suspend clause will be stored and passed to the on resume clause.

Inmuch the sameway, we can checkpoint more complexmutable data structures upon suspension

and restore them upon resumption. For example, we can backtrack external resources, for example

the position of a cursor in a file, or even close and reopen the file. This way, we can reuse our

backtracking parser for directly parsing from a file, which we demonstrate in Section 4.1.

2.6 Resource Management
While one of the intended uses of these mechanisms is for backtracking external resources, our

on suspend can serve a similar purpose as finally clauses found in Java and related languages.

For example, we can close a file whenever the control flow leaves the enclosing block.

val file = open("example.txt", WriteOnly())

try { . . . }

on suspend { close(file) }

on resume { _ ⇒ do throw("re-entering scope") }

on return { x ⇒ close(file); return x }

There are two ways the control flow can leave the block: when returning from the handler after

computing the resulting value and when forwarding an effect operation to an outer handler. In both

cases, we close the file using the corresponding clauses on return and on suspend. However, with
effect handlers, wemust also be prepared for the case when the control flow re-enters a block of code,

potentially multiple times. In this case, here we have to throw an exception, because the file is already

closed. We believe that in the absence of static checks for control-flow linearity [Brachthäuser and

Leijen 2023; Tang et al. 2024; van Rooij and Krebbers 2025], this dynamic check is the best we can

achieve. Unfortunately, this also means that even effect operations resuming exactly once cannot

cross the handler protecting the file, as we illustrate in the next section.

2.7 Operational Intuition
Let us again consider the last program from the previous section. When calling an arbitrary

effect operation in the body of try, the file is closed by the suspend clause. What happens if the

corresponding handler resumes the continuation? The control flow returns to where the effect

operation was called and continues. But the file is no longer open and the file handle thus invalid.

Consequently, any subsequent actions using the file handle will fail.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:7

1

𝐸

5

𝑙2
4

3

𝑙1
2

𝐾

1

#𝑙
1
𝑟𝑒𝑤𝑖𝑛𝑑

𝐸

5

𝑙2
4

3

𝑙1
2

𝐾

rewind

Fig. 2. Dual to the unwinding of the stack onto the captured continuation K , rewinding the continuation
K onto the stack E prompts the execution of resume clauses. For remembering to continue rewinding the
continuation onto the stack, a # rewind is pushed before executing the resume clause.

𝑠𝑠𝑝

𝑥 ⇒ 𝑠𝑟𝑠

𝑥 ⇒ 𝑠𝑟𝑡


{
𝑙

𝑥, 𝑘 ⇒ 𝑠

𝐸

Fig. 3. A handler stack frame consists of a unique label l and the handler implementation itself. A finalizer
frame consists of a suspend clause, a resume clause and a return clause.

It can be instructive to visualize the stack unwinding and continuation capturing, as can be seen

in Figure 1. Since we cannot be sure whether the continuation will be discarded or resumed, we

need to ensure that all resources are released during the continuation capturing (stack unwinding).

Hence, we need to stop the unwinding process each time we encounter an effect handler that is not

assigned the label we are searching for and finalize resources. In the case of Figure 1, we need to

run the finalizer associated with the handler identified by the label l2 and then remember to later

continue the unwinding process in search of the label l1. We also require that finalization works

in the presence of multi-shot continuations and that the finalization clauses themselves may call

effects and thereby capture the continuation.

While suspend clauses run during the continuation capture, we furthermore need re-initialization

clauses for re-acquiring any released resources in case an effect operation resumes the continuation.

We call these resume clauses. Dually, these clauses are run before a handler is rewound onto the

stack, as shown in Figure 2. When used correctly, they allow library authors to guarantee that all

resources are re-acquired before being accessed.

We also support return clauses with the semantics that whenever control flow exits a handler,

the clause executed with the result of the computation in scope. Diverging from the semantics of

languages like Koka [Leijen 2017] and Eff [Pretnar 2015], in our system it does not matter whether

the handler returns normally from the handled program or via the handler itself; the return clause

is executed in any case.

Importantly, when encountering a handler, not one handler frame, but two distinct frames are

pushed onto the stack as visualized in Figure 3. First, a finalizer frame is pushed that consists of

a suspend clause, a resume clause, and a return clause. Second, as is standard, a handler frame is

pushed, consisting of a label l uniquely identifying it and the handler implementation.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:8 Voigt, Schuster, and Brachthäuser

When a finalizer frame is pushed onto the continuation during unwinding, the suspend clause

is executed. Dually, when a finalizer frame is pushed back onto the stack during rewinding, the

resume clause is executed. Lastly, if a finalizer frame is popped from the stack through a normal

return (either from the handler or the handled program), the return clause is executed.

Given these new control flow constructs, as an alternative to throwing an exception, we can

store the file in a local mutable reference, and re-open it when control flow re-enters the body.

var file = open("example.txt", WriteOnly())

try { . . . }

on suspend { close(file) }

on resume { _ ⇒ file = open("example.txt", WriteOnly()) }

on return { x ⇒ close(file); return x }

Now, the suspend clause closes the file handle when the body yields, and the resume clause re-

opens it when the continuation is resumed. Moreover, if the continuation is not resumed, the

behavior is exactly, as desired as the file handle remains closed.

3 Formal Presentation
In this section, we present the syntax, type system, and operational semantics of System Ξ↬, a

language with effect handlers and dynamic wind. Furthermore, we state and prove the soundness

of the language. Note that the presented calculus System Ξ↬ is an extension to System Ξ as

introduced by Brachthäuser et al. [2020] and relies on second-class functions to guarantee effect

safety. We refer to these second-class functions as blocks.

3.1 Syntax
We start by presenting the syntax of System Ξ↬ as shown in Figure 4. Besides the standard

syntactic constructs of expressions and value literals, we also define so called blocks b. Blocks can
either be a block variable f or a block literal of the form { (ÐÐÐ⇀xi : 𝜏 i,

ÐÐÐ⇀
fj : 𝜎 j) ⇒ s }. This notation is

to be understood as binding the names xi and fj within the scope of s.
Similarly, the statement def f = b; s binds the block b to the name f within the scope of s.

We also have the familiar syntax for applying blocks b(Ð⇀ei ,
Ð⇀
bj). Furthermore, statements can be

sequenced using the usual syntax val x = s; s. Additionally, we support returning expressions

where a statement is expected with return e. Effect handlers try { f ⇒ s } with { (Ð⇀xi , k) ⇒ s }
are written in explicit capability-passing style, that is, the corresponding handler binds the block
variable f (capability) in the handled statement s [Brachthäuser et al. 2020]. Compared to System Ξ,
we add three new clauses to effect handlers: on suspend, on resume, and on return. We define

finally as syntactic sugar for defining both an on suspend and an on return clause. We cover

these new clauses in greater detail later. They perform dynamic wind and are at the focal point of

enabling backtracking and finalization of external resources in the presence of effect handlers.

Finally, we define the syntax for the value Γ, block Δ and label Ξ environment. Values have

value types 𝜏 , blocks have block types 𝜎 . The value environment Γ contains value bindings x : 𝜏

and the block environment contains Δ contains block bindings f : 𝜎 . The label environment Ξ
contains a mapping from unique labels l to block types of capabilities. It is only used for proving

the preservation of invariants in our abstract machine semantics.

3.2 Typing
The type system of System Ξ↬ is defined in terms of three typing judgments for expressions,

blocks, and statements (Figure 5).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:9

Syntax:
Labels l ::= @5ab | @42c | . . . labels

Expressions e ::= x expression variables

| v values

Values v ::= () | 0 | 1 | ... primitives

Blocks b ::= f block variables

| { (ÐÐ⇀x : 𝜏,
ÐÐ⇀
f : 𝜎) ⇒ s } block implementation

Statements s ::= def f = b; s block definition

| b(Ð⇀e , Ð⇀b) block application

| val x = s; s sequencing

| return e returning

| try { f ⇒ s } with h effect handler

Handler h ::= {(Ð⇀x , k) ⇒ s } handler implementation

on suspend { s } suspend clause

on resume { x ⇒ s } resume clause

on return { x ⇒ s } return clause

Definitions:

try { s1 } finally { s2 }
def
= try { s1 } on suspend { s2 } on return { x ⇒ s2; return x }

Types:
Value Types 𝜏 ::= Int | Bool | Unit | . . . base types

Block Types 𝜎 ::= (Ð⇀𝜏 , Ð⇀𝜎) → 𝜏 function types

Environments:
Value Environment Γ ::= ∅ empty environment

| Γ, x : 𝜏 value bindings

Block Environment Δ ∅ empty environment

| Δ, f : 𝜎 block bindings

Label Environment Ξ ∅ empty environment

| Δ, l : Ð⇀𝜏 → 𝜏 block bindings

Fig. 4. Syntax System Ξ↬

As noted earlier, there is a distinction being made between expressions and blocks, that is, blocks

are treated as second-class [Levy 2001; Osvald et al. 2016], while expressions are first-class: blocks

cannot be returned or stored. This is to ensure effect safety as blocks may close over capabilities

and returning them would lead to capabilities (passed as blocks) escaping their respective scope.

Though, Brachthäuser et al. [2022] show that this is not an inevitable necessity by presenting

System C in which the captured capabilities of second-class blocks can be reified into the type of a

first-class function, thereby ensuring they are still in scope upon usage. This distinction between

potentially effectful, second-class computations (statements) and pure, first-class expressions is

also reflected by two distinct type environments: Γ for mapping from value variables x to value

types 𝜏 and Δ for mapping from block variables f to block types 𝜎 . Besides the aforementioned

separation of values and blocks, the typing rules for blocks (Block), (Block-Var), and expressions
(Lit), (Var) are standard.

Statements. The typing rules for sequencing, returning as well as applying and defining blocks

are also completely standard. More interestingly, we recall the original typing rule for lexical effect

handlers of System Ξ [Brachthäuser et al. 2020].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:10 Voigt, Schuster, and Brachthäuser

Block Typing. Γ Δ Ξ ⊢ b : 𝜎

f : 𝜎 ∈ Δ

Γ Δ Ξ ⊢ f : 𝜎
[Block-Var]

Γ, ÐÐÐ⇀xi : 𝜏 i Δ,
ÐÐÐ⇀
fj : 𝜎 j Ξ ⊢ s : 𝜏

Γ Δ Ξ ⊢ { (ÐÐÐ⇀xi : 𝜏 i,
ÐÐÐ⇀
fj : 𝜎 j) ⇒ s } : (Ð⇀𝜏 i , Ð⇀𝜎 j) → 𝜏

[Block]

Expression Typing. Γ ⊢ e : 𝜏

Γ ⊢ n : Int
[Lit] x : 𝜏 ∈ Γ

Γ ⊢ x : 𝜏
[Var]

Statement Typing. Γ Δ Ξ ⊢ s : 𝜏

Γ Δ Ξ ⊢ s1 : 𝜏1 Γ, x : 𝜏1 Δ Ξ ⊢ s2 : 𝜏2

Γ Δ Ξ ⊢ val x = s1; s2 : 𝜏2
[Val]

Γ ⊢ e : 𝜏

Γ Δ Ξ ⊢ return e : 𝜏
[Ret]

ÐÐÐÐÐÐÐ⇀
Γ ⊢ ei : 𝜏 i

ÐÐÐÐÐÐÐÐÐÐÐÐÐ⇀
Γ Δ Ξ ⊢ bj : 𝜎 j

Γ Δ Ξ ⊢ b : (Ð⇀𝜏 i , Ð⇀𝜎 j) → 𝜏

Γ Δ Ξ ⊢ b(Ð⇀ei ,
Ð⇀
bj) : 𝜏

[App]

Γ Δ Ξ ⊢ b : 𝜎 Γ Δ, f : 𝜎 Ξ ⊢ s : 𝜏

Γ Δ Ξ ⊢ def f = b; s : 𝜏
[Def]

Γ Δ, f :
Ð⇀𝜏 i → 𝜏0 Ξ, l : Ð⇀𝜏 i → 𝜏0 ⊢ s : 𝜏

Γ Δ Ξ ⊢ h :
Ð⇀𝜏 i → 𝜏0 𝜏 ⇒ 𝜏3

Γ Δ Ξ ⊢ try { f ⇒ s } with h : 𝜏3
[Try-Finalize]

Handler Typing. Γ Δ Ξ ⊢ h : 𝜏 → 𝜏 𝜏 ⇒ 𝜏

Γ, ÐÐÐ⇀xi : 𝜏 i Δ, k : 𝜏0 → 𝜏 Ξ ⊢ s : 𝜏 Γ Δ Ξ ⊢ s1 : 𝜏1
Γ, x1 : 𝜏1 Δ Ξ ⊢ s2 : Unit Γ, x : 𝜏 Δ Ξ ⊢ s3 : 𝜏3

Γ Δ Ξ ⊢ { (Ð⇀xi , k) ⇒ s } :
Ð⇀𝜏 i → 𝜏0 𝜏 ⇒ 𝜏3

on suspend { s1 }
on resume { x1 ⇒ s2 }
on return { x ⇒ s3 }

[Try-Handler]

Fig. 5. Typing of System Ξ↬.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:11

Γ Δ, f :
Ð⇀𝜏 i → 𝜏 ′ Ξ ⊢ s1 : 𝜏 Γ, ÐÐÐ⇀xi : 𝜏 i Δ, k : 𝜏 ′ → 𝜏 Ξ ⊢ s2 : 𝜏

Γ Δ Ξ ⊢ try { f ⇒ s1 } with { (Ð⇀xi , k) ⇒ s2 } : 𝜏

The handler introduces a capability, which is bound to f with type
Ð⇀𝜏 i → 𝜏 ′, within the scope of

s1. This capability’s implementation is given by s2 which may use the capability’s parameters
Ð⇀xi

and the captured continuation k. We notice that the left-hand side of the block type of f coincides

with the type of the parameters
Ð⇀xi . Additionally, the continuation k expects an argument of type

𝜏 ′ as this is exactly the return type the capability of f promises to its caller. Since the handler’s

implementation may choose to not resume, that is, not call the continuation k, the types of s1 and
s2 have to match such that the resulting type of the statement is 𝜏 .

Γ Δ Ξ ⊢ s : 𝜏 Γ Δ Ξ ⊢ s1 : 𝜏1
Γ, x1 : 𝜏1 Δ Ξ ⊢ s2 : Unit Γ, x : 𝜏 Δ Ξ ⊢ s3 : 𝜏3

Γ ⊢ try { s } on suspend { s1 } on resume { x1 ⇒ s2 } on return { x ⇒ s3 } : 𝜏3

We extend handler statements with three clauses to enable dynamic wind for effect handlers.

Compared to the previous typing rule, we can see that the overall type of the statement is determined

by the type of s3. Furthermore, x : 𝜏 is in scope for s3, that is, the return clause accepts the return

value of s as its parameter. Apart from returning, it is also possible for the control flow to exit the

current effect handler by calling capabilities introduced by outer handlers. The suspend clause

consists of s1, while the resume clause takes its return value as a parameter x1 : 𝜏1. Note that

these clauses, as opposed to the return clause, do not alter the overall type of the handler.

Combining the previous two typing rules results in the rules (Try-Finalize) and (Try-Handler),

which are at the core of the typing rules of System Ξ↬ in Figure 5. (Try-Handler) type-checks

the handler h of a try statement against a capability type
Ð⇀𝜏 i → 𝜏0 and a return clause type 𝜏 ⇒ 𝜏3.

When checking the handler s against 𝜏 , the capabilities parameters
ÐÐÐÐ⇀xi : 𝜏 i and the continuation’s

type 𝜏0 → 𝜏 are brought into scope. Notably, the continuation’s type is altered by the existence of

the return clause. Also note that the suspend clause must yield Unit while being passed the return

value x1 : 𝜏1 of the suspend clause. Finally, the return clause is being passed the result of the try

body x : 𝜏 and transforms it into a value of type 𝜏3. (Try-Finalize) checks a try statement against

the type 𝜏3. For that, the rule (Try-Handler) is invoked for brevity. Additionally, the body s is
checked against 𝜏 with the capability f :

Ð⇀𝜏 i → 𝜏0 in scope.

The remaining typing rules for statements Val, Ret, App and Def are completely standard except

for the separation of expressions and blocks in Def, where f is added not to Γ but Δ.

3.3 Semantics
We now turn to presenting the operational semantics of System Ξ↬. First, we introduce the syntax

of an abstract machine. Then, we define the reduction rules for the abstract machine. Lastly, we

state and prove theorems about machine reduction. To do so, we extend typing to machine states,

which we omit from this presentation.

3.3.1 Abstract Machine. The syntax defined in Figure 6 is to be seen as an extension of the syntax

of System Ξ↬ given in Figure 4. The new runtime constructs are denoted by a leading #.

We introduce two new kinds of block values. First, capability calls of the form #l cap that

are introduced by handlers and are annotated with a label l. Second, resumptions of the form

resume(l, {(Ð⇀x , k) ⇒ s }, K), taking a label l, a handler implementation {(Ð⇀x , k) ⇒ s } and

continuation K as arguments.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:12 Voigt, Schuster, and Brachthäuser

Syntax for the Operational Semantics and Abstract Machine:
Blocks b ::= f block variables

| w block values

| #l cap capabilities

| # resume(l, {(Ð⇀x , k) ⇒ s }, K) resumptions

Block values w ::= { (ÐÐ⇀x : 𝜏,
ÐÐ⇀
f : 𝜎) ⇒ s } block implementation

Runtime Stack E ::= •
| #l { □ } with { (Ð⇀x , k) ⇒ s } :: E handler

| F :: E finalizer

| F :: E frame

Continuation K ::= •
| #l { □ } with { (Ð⇀x , k) ⇒ s } :: E handler

| (F , v) :: K finalizer, value pair

| F :: K
Frames F ::= val x = □; s sequencing

| #l unwind(Ð⇀v , F , K) unwinding

| # rewind(v, F , K) rewinding

Finalizer F ::= { □ } on suspend { s }
on resume { x ⇒ s }
on return { x ⇒ s }

Abstract Machine M ::= ⟨ s E ⟩ reduction mode

| ⟨ s E↬ K ⟩ unwind mode

| ⟨ s E↫ K ⟩ rewind mode

Fig. 6. Syntax of the abstract machine of System Ξ↬

Next, we define the syntax of the runtime stack and continuation. The runtime stack is either

empty (•), contains stack frames F , or a runtime handler #l { □ } with { (Ð⇀x , k) ⇒ s } annotated
with a label l. Importantly, the stack may also contain finalizer frames F , consisting of a suspend
clause, a resume clause and a return clause. Compared to the syntax of System Ξ↬, we separate

handlers from finalizers. The syntax of the runtime continuation almost mirrors that of the runtime

stack, the only difference being the different syntax for finalizers F : finalizer frames on the

continuation are finalizer-value pairs.

The syntax of frames F is shared by both the runtime continuation and stack. A frame F is either

val x = □; s for sequencing, an unwind frame #l unwind(Ð⇀v , F , K) annotated with a label l
and containing multiple values, a label, a finalizer frame F and a continuation as arguments, or a

rewind frame # rewind(v, F , K) consisting of a value v, finalizer F and continuation K .
Lastly, the syntax for the abstract machine itself consists of three cases. Each case corresponds to

one of three modes the machine may be in. In reduction mode, the machine is of the form ⟨ s | E ⟩,
in unwind mode ⟨ s | E↬ K ⟩ and in rewind mode ⟨ s | E↫ K ⟩.

3.3.2 Evaluation. Figure 7 presents the operational semantics in terms of an abstract machine.

There are three states the machine can be in.

Reduction Mode ⟨ s E ⟩. States of the form ⟨ s E ⟩ are used to perform standard machine

reductions. For brevity, we omit the trivial congruence rules for expressions. The rules (def) and
(app) reduce function definition and block applications in the expected way without a context. The

rules (cong), (pop) and (push) perform standard reductions of pushing and popping frames of the

stack. The rule (return) reduces return v in the context of a handler frame by simply popping the

handler frame from the stack.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:13

The rule (return’) reduces the return of a value v within the context of a finalizer frame to

F .return[x ↦→ v], where F .return is the body of the return clause. Recall from Figure 6 that F
stands for a finalizer frame consisting of a suspend, resume and return clause. The return clause’s

body receives a value v of as argument x and continues the evaluation in reduction mode.

The rule (try) introduces both a handler frame #l { □ } with { (Ð⇀x , k) ⇒ s } and a finalizer frame

F (h) that is extracted from the handler h in the obvious way. Furthermore, a capability #l cap is

substituted for f in s with a fresh label l coinciding with the label given to the introduced handler

frame.

Unwind Mode ⟨ s E↬ K ⟩. We model the process of unwinding the stack E in search for a

certain delimiter (label) l, thereby capturing the continuation K . E is the remainder of the stack the

search continues on. By construction, this state is always of the form ⟨ #l cap(Ð⇀v) E↬ K ⟩.
The rule (cap) engages the unwind mode with the empty continuation • when a capability call

occurs. During the unwind process, stack frames F are simply pushed from the stack E onto the

captured continuation K as expressed by the stepping rule (unwind). The rule (unwind’) serves a
similar purpose and just pushes a handler from the stack onto the continuation.

Eventually, we will find the appropriate handler with the correct label l. Then, (handle) dis-
engages the unwind mode. Consequently, the handler’s implementation s is evaluated in reduc-

tion mode with the capability’s arguments
Ð⇀vi substituted for

Ð⇀xi and a resume block of form

resume(l, { (Ð⇀x , k) ⇒ s }, K) for k.
If a finalizer frame is found while unwinding the stack, (suspend) prompts the evaluation of

the finalizer’s suspend clause, denoted by F .suspend. Since we originally wanted to search for

the delimiter l and thus have to remember to unwind the stack E later on, we save all the needed

information to reinstate the encountered finalizer frame later in an unwind frame of the form

#l unwind(Ð⇀v , F , K) and push it onto the stack E. Notice that the machine now enters reduction

mode and temporarily suspends the unwinding process.

When encountering a #l unwind(Ð⇀v , F , K) frame, (suspend’) reinstantiates the capability call

#l cap(Ð⇀v) and re-engages unwind mode. Importantly, the finalizer frame is now pushed back onto

the continuation, together with the result v of evaluating the suspend clause for later passing it to

the resume clause when potentially rewinding.

Rewind Mode ⟨ s E↫ K ⟩. In this mode, we rewind the captured continuation K back onto the

stack E until K is of form •. By construction, the machine is always of form ⟨ return v E↫ K ⟩
in rewind mode.

The rule (cont) starts the transition from reduction mode to rewind mode if a resume block

resume(l, { (Ð⇀x , k) ⇒ s }, K) is applied to a value v in reduction mode. Using the label l, the
handler h, and the captured continuation K stored in the resume block, we reinstate the handler

back onto the stack E and start the process of rewinding the captured continuation. Since applying

a value v to a resume block can be seen as calling the continuation, we need to return v back to the

call-site of the capability that caused the unwind process.

Symmetric to (unwind), (rewind) moves frames F from the continuation K back onto E and

(rewind’) does the same for handler frames. Similarly to how (suspend) defines the behavior when
encountering finalizers during the unwind process, (resume) defines the behavior of encountering
finalizers during the rewind process. When pushing a handler from the captured continuation K
back onto the stack E, we have to evaluate the resume clause F .resume and substitute the result

of the previously evaluated suspend clause v′ for x. Furthermore, we need to remember to continue

rewinding the stack later on. Similarly to the unwind frame #l unwind(Ð⇀v , F , K), the rewind
frame # rewind(v′, F , K) fulfills the same role for the rewind process.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:14 Voigt, Schuster, and Brachthäuser

Dual to (suspend’), (resume’) unpacks the previously encountered finalizer frame from a rewind

frame, pushes it onto the stack E and re-engages the rewind mode using K and v′.
Lastly, (stop) terminates the rewind mode if the captured continuation has been rewound com-

pletely onto the stack E.

3.3.3 Evaluation Context. The decision to execute the suspend, resume, and return clause in the

outer context, where the finalizer frame is not yet pushed back onto the stack, may seem arbitrary

but there are good reasons for it. Running the suspend clause in the inner context (with the finalizer

frame pushed back onto the stack) is problematic if it uses capabilities since this would again

prompt the unwinding of the stack. If the stack is unwound while executing the suspend clause, the

same clause would be triggered again, causing an infinite loop. The same argument can be made

for the return clause.

If the resume clause were run in the inner context and uses capabilities, the suspend clause

would be triggered. For example, if the suspend clause closes a file handle and the resume clause

opens it again, this would immediately close the file handle again before resuming the continuation,

leading to accesses to invalid file handles. It furthermore violates the intuitive requirement that the

suspend clause and resume clause should cancel out one another. This is only the case if for each

resume clause execution, the suspend clause is executed exactly once.

3.3.4 Examples. In the following, we present two examples to convey a better understanding of the

operational semantics. As the reduction can be quite involved, even for small examples, we color

code the three different parts of the abstract machine. The statement under reduction is highlighted

in yellow , the runtime stack in blue and the captured continuation in red .

Example 3.1. Consider the following example, where we reduce the simple program

try { f ⇒ val x = f (1); return x + 1 } with h

where

h := { (x, k) ⇒ k(x ∗ 2) }.
Evaluating the program using the operational semantics yields the following reduction steps:

⟨ try { f ⇒ val x = f (1); return x + 1 } with h • ⟩ −→
⟨ val x = #@1 cap(1); return x + 1 #@1 { □ } with h :: • ⟩ −→
⟨ #@1 cap(1) val x = □; return x + 1 :: #@1 { □ } with h :: • ⟩ −→
⟨ #@1 cap(1) val x = □; return x + 1 :: #@1 { □ } with h :: • ↬ • ⟩ −→
⟨ #@1 cap(1) #@1 { □ } with h :: • ↬ val x = □; return x + 1 :: • ⟩ −→
⟨ # resume(@1, h, val x = □; return x + 1 :: •)(1 ∗ 2) #@1 { □ } with h :: • ⟩ −→
⟨ return 2 #@1 { □ } with h :: • ↫ val x = □; return x + 1 :: • ⟩ −→
⟨ return 2 val x = □; return x + 1 :: #@1 { □ } with h :: • ↫ • ⟩ −→
⟨ return 2 val x = □; return x + 1 :: #@1 { □ } with h :: • ⟩ −→
⟨ return 3 #@1 { □ } with h :: • ⟩ −→
⟨ return 3 • ⟩

Example 3.2. Next, consider the following, more complex program that uses suspend and

resume clauses. Within those, we use a capability introduced at an outer handler.

try { f ⇒ try { g ⇒ f (v0) } with h2 } with h1

where

h1 := { (x, k) ⇒ k(v1) }
h2 := on suspend { f (v2) } on resume { x ⇒ f (v3) }

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:15

Reduction without context:
(def) def f = w; s −→ s[f ↦→ w]
(app) ({ (Ð⇀xi ,

Ð⇀
fj) ⇒ s })(Ð⇀vi , Ð⇀wj) −→ s[ÐÐÐÐ⇀xi ↦→ vi,

ÐÐÐÐ⇀
fj ↦→ wj]

Machine reductions:
Standard Machine Reductions
(cong) ⟨ s E ⟩ −→ ⟨ s′ E ⟩ if s −→ s′

(pop) ⟨ return v val x = □; s :: E ⟩ −→ ⟨ s[x ↦→ v] E ⟩
(push) ⟨ val x = s1; s2 E ⟩ −→ ⟨ s1 val x = □; s2 :: E ⟩
(return) ⟨ return v #l { □ } with { (Ð⇀x , k) ⇒ s } :: E ⟩ −→ ⟨ return v E ⟩
(return’) ⟨ return v { □ } F :: E ⟩ −→ ⟨ return(F)[x ↦→ v] E ⟩

Installing Effect Handlers
(try) ⟨ try { f ⇒ s } with h E ⟩ −→

⟨ s[f ↦→ #l cap] #l { □ } with { (Ð⇀x , k) ⇒ s } :: F (h) :: E ⟩ where l fresh
Finalization
(cap) ⟨ #l cap(Ð⇀v) E ⟩ −→

⟨ #l cap(Ð⇀v) E↬ • ⟩

(unwind) ⟨ #l cap(Ð⇀v) F :: E↬ K ⟩ −→
⟨ #l cap(Ð⇀v) E↬ F :: K ⟩

(unwind’) ⟨ #l cap(Ð⇀v) #l′ { □ } with { (Ð⇀x , k) ⇒ s } :: E↬ K ⟩ −→
⟨ #l cap(Ð⇀v) E↬ #l′ { □ } with { (Ð⇀x , k) ⇒ s } :: K ⟩

where l ≠ l′

(suspend) ⟨ #l cap(Ð⇀v) F :: E↬ K ⟩ −→
⟨ F .suspend #l unwind(Ð⇀v , F , K) :: E ⟩

(suspend’) ⟨ return v #l unwind(Ð⇀v , F , K) :: E ⟩ −→
⟨ #l cap(Ð⇀v) E↬ (F , v) :: K ⟩

(resume) ⟨ return v E↫ (F , v′) :: K ⟩ −→
⟨ F .resume[x ↦→ v′] # rewind(v, F , K) :: E ⟩

(resume’) ⟨ return v # rewind(v′, F , K) :: E ⟩ −→
⟨ return v′ F :: E↫ K ⟩

(rewind) ⟨ return v E↫ F :: K ⟩ −→
⟨ return v F :: E↫ K ⟩

(rewind’) ⟨ return v E↫ #l { □ } with { (Ð⇀x , k) ⇒ s } :: K ⟩ −→
⟨ return v #l { □ } with { (Ð⇀x , k) ⇒ s } :: E↫ K ⟩

(handle) ⟨ #l cap(Ð⇀v) #l′ { □ } with { (Ð⇀x , k) ⇒ s } :: E↬ K ⟩ −→
⟨ s[ÐÐÐÐ⇀xi ↦→ vi, k ↦→ # resume(#l { □ } with { (Ð⇀x , k) ⇒ s }, K)] E ⟩

where l = l′

(cont) ⟨ # resume(#l { □ } with { (Ð⇀x , k), K) }, K) (v) E ⟩ −→
⟨ return v (#l { □ } with (Ð⇀x , k) :: E)↫ K ⟩

(stop) ⟨ return v E↫ • ⟩ −→
⟨ return v E ⟩

Fig. 7. Abstract machine semantics of System Ξ↬.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:16 Voigt, Schuster, and Brachthäuser

For brevity, we only show the most interesting reduction steps, omit the rest and only push a

finalizer frame for the inner handler instead of a handler and finalizer frame.

⟨ try { f ⇒ try { g ⇒ f (v0) } with h2 } with h1 • ⟩ −→∗

⟨ #@1 cap(v0) { □ } h2 :: #@1 { □ } with h1 :: • ↬ • ⟩ −→∗

⟨ #@1 cap(v2) #@1 unwind(v0, h2, •) :: #@1 { • } with h1 :: • ⟩ (1) −→∗

⟨ #@1 cap(v2) #@1 { □ } with h1 :: • ↬ #@1 unwind(v0, h2, •) :: • ⟩ −→∗

⟨ # resume(@1, h1, #@1 unwind(v0, h2, •) :: •)(v1) • ⟩ −→∗

⟨ return v1 #@1 unwind(v0, h2, •) :: #@1 { □ } with h1 :: • ⟩ (2) −→
⟨ #@1 cap(v0) #@1 { □ } with h1 :: • ↬ ({ □ } h2, v1) :: • ⟩ −→∗

⟨ return v1 #@1 { □ } with h1 :: • ↫ ({ □ } h2, v1) :: • ⟩ (3) −→
⟨ #@1 cap(v3) # rewind(v1, h2, •) :: #@1 { □ } with h1 :: • ⟩ (4) −→∗

⟨ return v1 # rewind(v1, h2, •) :: #@1 { □ } with h1 :: • ⟩ −→∗

⟨ return v1 { □ } h2 :: { □ } with h1 :: • ↫ • ⟩ −→∗

⟨ return v1 • ⟩

This more complex example showcases that even when the suspend and resume clauses them-

selves are effectful, no stack unwinding or rewinding is forgotten.

Step (1) is interesting, because when unwinding the stack to find the handler with label #@1, we

need to traverse a finalizer frame. Thus, we first need to execute the suspend clause (which leads to

another effect f (v2)), before we later continue unwinding the stack. We can see that the # unwind
frame serves as a reminder for unwinding of the stack and also for discharging the finalizer frame

such that it is not executed again when encountering effects in the suspend clause.

At step (2), we have returned from the effect in the suspend clause and push the finalizer frame

onto the continuation, together with the returned value, later to be used by the resume clause.
At step (3), we traverse the finalizer frame again while rewinding the stack, thus, the resume

clause is executed. However, we still have to remember to continue rewinding later, hence, a

rewind primitive is pushed onto the stack and again deactivates the finalizer frame such that the

suspend clause is not triggered again by effects in the resume clause.
At step (4), we then continue rewinding with the original return value of f (v0), yielding it as the

final result.

3.4 Properties
In this section, we prove the theorems of progress (Theorem 3.3) and preservation (Theorem 3.4)

with respect to the type system and operational semantics. Combining progress and preservation

gives us soundness (Theorem 3.5) as usual.

3.4.1 Progress.

Theorem 3.3 (Progress). If ⊢ m M : 𝜏 , then there either exists a value v such that
M = ⟨ return v • ⟩ or a machine M′ with M −→ M′.

Proof. The proof is mostly straightforward. First, a case distinction on the abstract machine

typing ⊢ m M : 𝜏 (Appendix A.2) is made, followed by inversion and a case distinction on the

typing derivation of s. The proof can be found in its entirety in the Appendix A.3. □

3.4.2 Preservation.

Theorem 3.4 (Preservation). If ⊢ m M : 𝜏 and there exists M −→ M′, then ⊢ m M′
: 𝜏 .

Proof. The proof is by case distinction on the step M −→ M′
and continued application of

inversion within each case. The whole proof can be found in the Appendix A.4. □

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:17

Machine reductions:
. . .

(return’) ⟨ return v #l F :: E R ⟩ −→
⟨ return(F)[x ↦→ v] E R(l) = 0 ⟩

(try) ⟨ try { f ⇒ s } with h E R ⟩ −→
⟨ s[f ↦→ #l cap] #l { □ } with { (Ð⇀x , k) ⇒ sh } :: #l F (h) :: E R(l) = 1 ⟩

where l fresh

(suspend) ⟨ #l cap(Ð⇀v) #l′ F :: E↬ K R ⟩ −→
⟨ s #l unwind(Ð⇀v , #l′ F , K) :: E R(l′) = 0 ⟩

(resume’) ⟨ return v # rewind(v′, #l F , K) :: E R ⟩ −→
⟨ return v′ #l F :: E↫ K R(l) = 1 ⟩

Fig. 8. Instrumented abstract machine semantics of System Ξ↬. Changes compared to the previous machine
semantics are highlighted in gray .

3.4.3 Soundness.

Theorem 3.5 (Soundness). If ⊢ m M : 𝜏 , there exists a step M −→∗ M′ and there exists no further
step M′ −→ M′′, then ⊢ m M′

: 𝜏 and there exists some value v such that M′ = ⟨ return v | • ⟩.

Proof. Directly follows from the continued, interleaved application of the theorems of Progress

(Theorem 3.3) and Preservation (Theorem 3.4). □

3.4.4 Resource Safety. One of the most obvious and desirable properties is that all active resources

are actually open and all others are closed. However, the previously presented operational semantics

do not directly allow us to reason about the state of resources. Thus, in this section, we instru-

ment the abstract machine in Figure 8 such that it is augmented to carry an additional resource

environment R that maps abstract resource labels l to either an open state (1) or a closed state (0).

Commonly, try − finally statements are used in the following way:

val file = open(path)

try { . . . read(file) . . . }

finally { . . . close(file) . . . }

Before the try − finally statement is entered, a file handle is opened which then is subsequently

read in the body and finalized by closing it again.

We capture this notion of initializing the resource before entering the body in the augmented rule

of (try). When pushing a finalizer frame onto the stack in step (try), we also open the resource that

is conceptually associated with this handler by setting R(l) = 1. Dually, in (return’), when popping

the finalizer frame from the stack, the associated resource is closed again before the finalization
statement s is run.

var file = open(path)

try { . . . read(file) . . . }

on resume { _ ⇒ open(path) }

finally { throw("abort"); close(file) }

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:18 Voigt, Schuster, and Brachthäuser

In this program, assuming the handler for exc does not resume the continuation, closeFile is

never actually run. Similarly, the updated rule (suspend) closes the resource during unwind mode

when transitioning to reduction mode before executing the suspend clause. Dually, when rewinding,

the rule (resume’) re-opens the resource before running the resume clause. These invariants are not

statically checked, but rather represent a set of best practices that users should follow.

When considering the instrumented abstract machine, this corresponds to the properties that

R(li) = 1 for all labels li that are active on the stack and R(lj) = 0 for all other labels in R. We

define the predicate active in the following way:

active(•) = ∅
active(#l F :: E) = { l } ∪ active(E)
active(#l { □ } with { x ⇒ s } :: E) = active(E)
active(F :: E) = active(E)

Notice that we do not consider labels contained in a # unwind or # rewind frame to be active.

Instead, only finalizer frames add active resources.

For stating the resource safety theorem, we also define predicates ActiveOpen and InactiveClosed
as shorthands for the propositions stating that all active resources should be open and all other

resources should be closed.

ActiveOpen(M) := ∀li ∈ active(M .E), M .R(li) = 1

InactiveClosed(M) := ∀li ∈ R \ active(M .E), M .R(li) = 0

The extractor functions M .R and M .E on machines M , extracting the resource environment R and

the stack E, respectively, are defined in the obvious way. With these definitions, we can formally

state the theorem of resource safety as follows:

Theorem 3.6 (Resource Safety). If ActiveOpen(M) and InactiveClosed(M) and M −→ M′,
then ActiveOpen(M′) and InactiveClosed(M′).

Proof. The proof proceeds by case analysis on the step M −→ M′
. The only interesting cases

are those in which finalizer frames are involved and either pushed onto the stack or from the stack

onto the continuation. Notably, these cases fulfill the property of Resource Safety by construction.

All the other cases are trivially true by assumption as no changes occur in R when taking a step.

The complete proof can be found in the Appendix A.1. □

4 Implementation
As a proof-of-concept, we implemented the extensions of System Ξ↬ relative to System Ξ for the

Effekt language
1
. In this section, we briefly describe the Effekt language and discuss some of the

interesting aspects of the implementation.

Effekt is a programming language [Brachthäuser et al. 2022; Brachthäuser et al. 2020] implement-

ing features from both imperative and functional languages, such as algebraic data types, pattern

matching, mutable state, regions and first-class functions. Most prominently, Effekt also supports

lexical effect handlers as well as lightweight contextual effect polymorphism. The language comes

with an online language tour, an online playground, and a Visual Studio Code extension.

Notably, Effekt compiles to several different backends, including LLVM, JavaScript andChezScheme.

We implemented the ideas presented in this paper solely for the JavaScript backend. The imple-

mentation closely follows the semantics given by the abstract machine semantics: we introduce a

new kind of finalizer stack frame. Also, the pre-existing unwinding and rewinding process in the

1
https://effekt-lang.org

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

https://effekt-lang.org

Dynamic Wind for Effect Handlers 377:19

JavaScript runtime is augmented to account for the new finalizer stack frames. The changes to the

Effekt compiler are straightforward and consist of about 500 changed lines of code.

4.1 Extended example: Combining Backtracking and Resource Management
It is a very common use case for try-finally constructs to open a file handle and ensure its release

through the finally clause. Furthermore, as we have seen, we can also use the ideas introduced by

our work for achieving correct backtracking behavior of heap resources. In the following, we will

showcase an example that combines both ideas and integrates nicely with the parser combinators

presented in Section 2.

First, recall the read effect that reads a single character. Previously, we used this effect in

conjunction with reading from an array and backtracking its position. Alternatively, we can

actually directly read from a file.

def readFile(path: String) { program: (Ref[Int]) ⇒ Unit / read }: Unit = {

val mode = ReadOnly()

var file = open(path, mode)

val position = ref(0)

try {

program(position)

} with read {

val p = position.get

position.set(p + 1)

resume(readChar(file, p))

} on suspend { close(file); position.get }

on resume { p ⇒ position.set(p); file = open(path, mode) }

on return { _ ⇒ close(file) }

}

The function readFile receives a file path as an argument and a block program which in turn

receives a global reference and yields Unit. Furthermore, program uses the read effect and requires
the calling context to handle it. We start by opening a given file and storing the file handle in a

mutable variable file. Additionally, we store the current position from which the next character

is read in a global mutable reference position. In the try-body, we pass the position reference
to program such that program has access to the current position, for example, for generating

meaningful error messages during parsing. The handler of read advances the position by one

and reads the next character from the file. Importantly, we use the suspend, resume, and return
clauses for closing and opening the file for each stack unwind and rewind. We also backtrack the

state of position by returning the current value from the suspend clause to the resume clause.

Most notably, we can use the readFile handler as a drop-in replacement for feedGlobal in our

parser from Section 2, while still correctly managing the file handler in terms of resource safety.

def parse[R](file: String) { parser: () ⇒ R / Parser }: Option[R] / {} = {

backtrack { option { readFile(file) { parser() } } }

}

The file is closed and re-opened on each backtracking attempt. A variation that only backtracks the

position or moves the file cursor is possible. More problematic is the fact that the file is closed and

opened for each effect operation that is used in parser but handled outside of parse. We discuss

this issue in the next subsection.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:20 Voigt, Schuster, and Brachthäuser

4.2 Tail-Resumption Optimization
Effect handlers which are syntactically tail-resumptive — that is, handler implementations call

resume exactly once and only in tail position — are optimized by the Effekt compiler such that the

explicit unwinding and rewinding of the stack is not needed. Thus, intuitively, this optimization is

applied to all programs that are of the following form (where . . . does not mention k):

try { f ⇒ s } with { (x, k) ⇒ ...; k(v) } def f (x) = { ...; return v }; s

The capability introduced by the handler’s implementation is given the name f. The key insight

is that resuming the continuation exactly once in tail position corresponds to a normal function

return. Hence, the given program on the left is transformed to the optimized program on the right,

where the try is removed and the handler is replaced by a simple function definition.

By applying this transformation, the effect call corresponds to a mere function call, rather

than prompting the unwinding of the stack, yielding improved performance. However, since the

finalization clauses rely on the explicit stack unwinding for triggering them, further care needs to

be taken when employing this optimization with the requirement of preserving the same semantics.

try { f ⇒
try { ...; f (v1); ... }
on suspend { s2 }
on resume { x ⇒ s3 }
on return { x ⇒ s4 }

} with { (x, k) ⇒ ...; k(v2)
} on return { x ⇒ s5 }

try {
def f (x) = { ...; return v2 }
try { ...; f (v1); ... }
on suspend { s2 }
on resume { x ⇒ s3 }
on return { x ⇒ s4 }

} on return { x ⇒ s5 }

In the program on the left (before optimization), there is an outer tail-resumptive handler and

an inner handler with finalization clauses. After optimizing the program, the original program is

transformed to the program on the right such that the outer handler’s implementation is extracted

into the function definition f and only the return clause remains. Consequently, since each call to f
no longer causes a stack unwinding in search of the needed handler, the suspend and resume clause
are not executed when calling f. Thus, in general, this optimization is not semantics-preserving.

As a solution, this optimization could either be disabled or the user can be given explicit control on

when to apply it.

5 Performance Evaluation
To evaluate whether supporting the introduced finalization clauses adds significant overhead to

the execution time of Effekt programs, we benchmark our implementation against an appropriate

baseline. Furthermore, for investigating the performance penalty of disabling the tail-resumption

optimization, we also benchmark our implementation against the baseline.

The benchmarks are adapted from a community-maintained benchmark suite [Hillerström et al.

2023]. It is important to note that none of these benchmarks use the finalization clauses, and we

instead intend to measure the overhead of supporting finalization in Effekt’s JavaScript runtime.

5.1 Benchmarking Methodology
The benchmarks were conducted using hyperfine version 1.19.0 [Peter 2023] on a machine with

an Apple M1 Pro CPU with 8 cores and 16 GB of RAM, running macOS version 15.5. As a baseline,

we used the latest commit in the Effekt compiler from which our implementation diverges (Effekt

0.14.0 at a4418db).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:21

Effekt JS (finalizers) Effekt JS (baseline)

w/ tail opt. w/o tail opt. w/ tail opt. w/o tail opt.

product-early 110.56± 5.95 110.60± 6.61 111.26± 6.73 109.19± 0.84

nqueens 154.19± 7.99 152.13± 1.01 143.21± 6.57 141.34± 1.02

countdown 52.02± 4.49 241.78± 12.59 50.76± 0.59 221.85± 1.43

iterator 87.15± 0.61 313.40± 15.75 87.55± 6.32 288.59± 9.42

tree-explore 62.32± 0.86 62.84± 3.96 61.44± 1.11 62.09± 4.54

fibonacci-recursive 133.86± 1.24 135.44± 6.80 134.19± 1.31 134.87± 6.11

resume-nontail 1080.50± 17.87 1068.75± 18.93 1049.61± 10.24 1049.66± 19.06

triples 220.75± 1.47 223.82± 11.20 196.51± 1.33 198.94± 8.63

parsing-dollars 140.63± 1.01 362.57± 11.39 139.81± 0.80 313.71± 11.01

geo. mean slowdown 1.03 1.06 1.00 1.00

Fig. 9. Runtimes of the benchmarks in milliseconds. Lower is better. We compare two different groups: Our
implementation with the tail-resumption optimization against the baseline (also with the same optimization
enabled) and both implementations without the tail-resumption optimization, color-coded in gray .

While the Effekt compiler has multiple backends (LLVM, ChezScheme, JavaScript), our imple-

mentation only targets the JavaScript backend using Node.js version 24.2.0.

For measuring only the runtime, we first generated the JavaScript files for each benchmark. We

measured the time it takes to execute each generated JavaScript file using Node.js. Each benchmark

is executed at least ten times, of which we obtain the arithmetic mean execution time and the

standard deviation.

5.2 Benchmark Results
Figure 9 shows the mean runtimes and standard deviations of the JavaScript backend using the

effect-handlers benchmark suite [Hillerström et al. 2023].

Expectedly, turning off the tail-resumption optimization can result in considerable slowdowns.

For example, the countdown benchmark is more than four times slower without said optimization.

In the geometric mean, our implementation without optimization is 52% slower compared to our

implementation with the tail-resumption optimization turned on.

Similarly, the baseline without optimization is 47% slower compared to the baseline with said

optimization turned on, thus being slightly less negatively affected by turning off the optimization.

Also, the optimization has no effect on benchmarks that do not feature tail-resumptive handlers,

like resume-nontail, fibonacci-recursive, tree-explore, or nqueens, which is also expected.

Both without and with optimization, the baseline is almost always faster. Only for the bench-

marks product-early, fibonacci-recursive, and iterator, our implementation is faster if the

optimization are turned on. It should be noted that the majority of measurements overlap with

respect to the range given by their standard deviation.

There are also cases where our implementation is notably slower than the baseline, like triples,
where our implementation (with andwithout optimizations) is more than 12% slower compared to its

respective baseline. Across all benchmarks, computing the geometric mean of the normalized mean

execution times yields a mean slowdown of 3% with optimizations and 6% without optimizations

compared to the respective baseline.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:22 Voigt, Schuster, and Brachthäuser

5.3 Discussion
Using finalization clauses introduces additional stack frames, as described in subsection 2.7. We

suspect this to be a significant overhead as twice as many stack frames need to be unwound and

rewound. To mitigate this overhead, we introduce the simple optimization of not pushing these

frames if a handler has no suspend, resume, and return clause. Thus, since these benchmarks do

not use finalization clauses, an equal amount of stack frames are pushed by both implementations.

As our implementation is still slower in most of the benchmarks, we conjecture that the observed

minor slowdowns can mainly be attributed to the added branching during unwinding and rewinding

for checking for suspend and resume clauses.

6 Related Work
We review implementations of dynamic wind in the presence of both undelimited and delimited

continuations. Then we discuss both dynamic and static approaches to resource management in

the presence of effect handlers.

6.1 Resource Finalization and Exception Handlers
The standard try-finally construct is known from languages like Java, JavaScript, C#, and Python.

However, since these languages do not support effect handlers — or, more generally, (delimited)

continuations — it is not possible for exceptional computations to be resumed. Furthermore, in

these languages, generators do not trigger finalization. Thus, finalization can be simplified and a

construct like on resume is not necessary.
Resource-Acquisition-Is-Initialization (RAII) was originally introduced by C++ [Stroustrup 2013],

and later adopted by other languages such as Rust [Klabnik and Nichols 2023], as a resource

allocation strategy. It statically ties the lifetime of resources to that of the object allocating and

owning them. In comparison, the ideas presented in this paper are largely orthogonal, as we mainly

discuss control flow and present effect handlers augmented with constructs for dynamic resource

finalization and backtracking.

Schuster et al. [2022] present a language with resource pools and lexical exception handlers

together with an abstract machine semantics as well as a continuation-passing translation for it.

They prove a resource safety theorem for the abstract machine semantics, and a simulation theorem

for the continuation-passing translation. Whereas they use type-level regions, we use second-class

blocks to ensure both resource safety and effect safety. We generalize their work from fixed to

arbitrary cleanup actions to suspend clauses, that may themselves use resources and control effects,

and more importantly from exception handlers to effect handlers, which necessitates rewinding

and resume clauses.

6.2 Effect Parametricity and Finalization
de Vilhena and Pottier [2023a] discuss the impact of a language construct such as finalization on

parametricity. Parametricity [Wadler 1989] (also known as the abstraction theorem, Reynolds [1983])

can be understood as interpreting a syntactic universal type as meta-level universal quantification

over a given universe of semantic types [de Vilhena and Pottier 2023a]. Specifically, this means

that parametric polymorphic functions must behave the same regardless of what type they are

instantiated with.

Effect parametricity [Biernacki et al. 2017; Zhang andMyers 2019] extends the notion to parametric

quantification over effects and is often understood as “handlers cannot interfere with parametric

effects”. de Vilhena and Pottier [2023a] describe how finalization interferes with effect parametricity.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:23

While finalizers cannot change how an effect is handled, they can observe that an effect is handled.

Consider the following program by de Vilhena and Pottier [2023b], translated to Effekt:

def observe { prog: ⇒ Unit / {} }: Int / {} = {

var r = 0

try { prog(); r } on suspend { r = r + 1 }

}

Due to contextual effect polymorphism [Brachthäuser et al. 2020], it is not possible that observe
modifies the effect handlers in prog. However, by means of the suspend clause it can be observed

whether (and how often) effects are used by prog. Pushing this even further, we can define a

catchAll handler that prevents handling of any yet unhandled effect:

effect Raise(msg: String): Nothing

def catchAll[R] { prog: ⇒ R / {} }: R / { Raise } =

try { prog() } on suspend { do Raise("not handling effect") }

Again, even though we do not mention any effects in the type of prog we want to handle, we can

still handle all effects by just raising an exception that, for example, may abort the program. While

interesting, we leave it to future work to study parametricity and finalization in a language like

Effekt featuring contextual effect polymorphism instead of parametric quantification over effects.

6.3 Effect Handlers and Dynamic Finalization
Leijen [2018] proposes an extension of the Koka language [Leijen 2014] to address the interaction

of effect handlers with external resources. In this extension, handlers can additionally contain

finally and initially clauses. The finally-clause is executed when returning normally or

when unwinding for non-resuming operations. Leijen recognizes that it is difficult to statically de-

termine whether an effect operation actually resumes. Instead, they propose to manually finalize
continuations, which resume with a special finalization exception that unwinds the continuation

and invokes the finalizers contained therein. They conjecture but do not prove that all finalizers

are executed. Koka also features a return operation that is triggered only if the handled program

returns normally, mapping the returned result. Importantly, this is different from our return clause,
which is executed both if the handled program returns normally or through the handler.

Sivaramakrishnan et al. [2021] describe the design and implementation of effect handlers for

OCaml 5. To support the correct interaction with linear resources and to guarantee clean up, they

require the continuation to be used linearly, but do not statically enforce this. A continuation

needs to be either continued, or explicitly discontinued. The latter raises an exception at the

call-site enabling exception handlers to free resources. OCaml 5 supports intercepting all effects and

exceptions. In principle, on-suspend and on-resume clauses could be expressed this way. However,

they state that “In the implementation, reperform is implemented as a primitive to avoid executing

code on the resumption path”.

The Eff language [Bauer and Pretnar 2015] also features finally clauses in effect handlers. It is

semantically equivalent to the on return clause presented in this paper. Like on return, it can be

thought of as an outer wrapper that applies a transformation to the result of the effect handler;

either returning from the handled program or the handler [Bauer and Pretnar 2015]. To the best of

our knowledge, there is no concept of on suspend and on resume in the Eff language.

Phipps-Costin et al. [2023] propose to extend WebAssembly with effect handlers. Here too,

continuations are assumed to be used linearly and either need to be resumed or aborted explicitly.

They introduce a specialized construct resume_throw x h* to manually resume a continuation

exceptionally, triggering exception and handlers at the call-site.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:24 Voigt, Schuster, and Brachthäuser

6.4 Dynamic Wind and Control Operators
Friedman and Haynes [1985] introduce dynamic-wind with three nullary function arguments:

prelude, body, and postlude. When no control operators are used, all three execute in order.

However, whenever control-flow leaves the body through a use of the control operator call/cc,
the postlude is executed. Conversely, whenever it re-enters, the prelude is executed again. While

similar in spirit, our suspend clause is only executed when the body is re-entered, and on resume
and on return allow us to distinguish between normal return and suspension.

Flatt et al. [2007] present an implementation of delimited control and, among other features,

dynamic wind. Their semantics and implementation are constrained by the legacy behavior of

Scheme, which did not directly support delimited control. In contrast, we can start from a clean

slate. Moreover, our work is in the context of effect handlers taking into account delimited control.

Their formalization is in an untyped setting, while we present a type- and effect-safe language.

Moreover, we state and prove our theorem of resource safety.

Sitaram [2003] discuss how a more general variant of unwind-protect known from Lisp should

behave in the presence of higher-order control, for example continuations. An unwind-protected

program consists of the program itself and a postlude that is guaranteed to be executed when control

flow exits the protected program. In programs without continuations, an already exited context

cannot be re-entered, thus rendering the idea of prelude that is run upon re-entering obsolete.

Sitaram argue that this should still be the case in the presence of continuations by ensuring the

postlude is only invoked upon a final control flow exit and not for each continuation call, meaning

that the postlude is executed exactly once.

Pitman [2003] agree with this sentiment and state that dynamic-wind is not the solution for

this problem as the postlude and prelude is run on every exit and resumption, for example when

working with a file.

Importantly, Clinger [2003] show that it is indeed possible to express unwind-protect in terms

of dynamic-wind, ensuring resources are only cleaned-up once by disallowing the re-entry, thus

only permitting one-shot continuations. However, Clinger point out that distinguishing between

these two different control flow exits is non-trivial and the added complexity might not be worth it.

Indeed, a continuation call may be arbitrarily complex in the amount of time its execution takes. It

is conceivable that in such cases the temporary finalization of resources until the later resumption

of the continuation may actually be beneficial.

6.5 Effect Handlers and Static Control-Flow Linearity
Brachthäuser and Leijen [2023] propose a type system that statically enforces control-flow linear-

ity, thus ruling out undesirable interactions of control and resources. The way a handler uses a

continuation is determined by a simple syntactic check.

Tang et al. [2024] track control-flow linearity and additionally integrate it into a full linear type

system, yielding more precision.

Similarly, van Rooij and Krebbers [2025] present an affine type system and effect system for

distinguishing between effects whose handlers use the continuation in one-shot (linear) and multi-

shot manner.

Using these approaches, a higher-order function that offers access to a linear resource like a file

could require the argument function to have linear control flow. Static approaches like these are

orthogonal to our work: we offer runtime constructs that allow for transparently backtracking

external state when possible, whereas their goal is to rule out bad interactions where it is not.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:25

7 Conclusion
In this paper, we discussed and offered a solution for obtaining well-defined behavior for the

combination of dynamic wind with lexical effect handlers. Specifically, resuming and capturing

continuations in the suspend or resume clauses is well-behaved and can be used to achieve well-

formed resource bracketing and backtracking of external state. This stands in contrast to earlier

work where this is considered undefined behavior. Furthermore, we endowed System Ξ↬ with

a type system and fine-grained operational semantics and proved the soundness of the formal

language System Ξ↬ by showing the theorems of progress and preservation. Additionally, we

offered an implicit usage guideline by instrumenting the abstract machine. When adhering to it,

only active resources are available and all others have been released. We formalized this statement

as resource safety and presented a proof. For evaluating our ideas, we implemented dynamic wind as

described in this paper as an extension to the existing Effekt language. Notably, we discussed current

limitations regarding the existing tail-resumption optimization applied in the Effekt compiler, as it

is not necessarily semantics-preserving in the presence of finalization clauses. For addressing this

concern, in the future, it would be interesting to complement our dynamic approach to resource

management with static checking of control-flow linearity. We hope to achieve both: backtracking

where it is possible and definitive finalization where it is not.

Data-Availability Statement
For evaluating our ideas, we implemented the ideas presented in this paper as an extension to the

existing Effekt
2
compiler written in Scala. We submit this implementation as an artifact [Voigt et al.

2025], including a selected set of examples that can be run using the compiler as well as the used

benchmark programs and results.

Acknowledgments
The work on this project was supported by the Deutsche Forschungsgemeinschaft (DFG – German

Research Foundation) – project number DFG-448316946.

2
https://github.com/effekt-lang/effekt

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

https://github.com/effekt-lang/effekt

377:26 Voigt, Schuster, and Brachthäuser

References
Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. Journal of Logical and Algebraic

Methods in Programming 84, 1 (2015), 108–123. doi:10.1016/j.jlamp.2014.02.001

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2017. Handle with Care: Relational Interpretation of

Algebraic Effects and Handlers. Proc. ACM Program. Lang. 2, POPL, Article 8 (Dec. 2017), 30 pages. doi:10.1145/3158096
Jonathan Immanuel Brachthäuser, Philipp Schuster, Edward Lee, and Aleksander Boruch-Gruszecki. 2022. Effects, Capabili-

ties, and Boxes: From Scope-Based Reasoning to Type-Based Reasoning and Back. Proc. ACM Program. Lang. 6, OOPSLA,
Article 76 (apr 2022), 30 pages. doi:10.1145/3527320

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as Capabilities: Effect Handlers and

Lightweight Effect Polymorphism. Proc. ACM Program. Lang. 4, OOPSLA, Article 126 (Nov. 2020). doi:10.1145/3428194
Jonathan Immanuel Brachthäuser and Daan Leijen. 2023. Qualified Effect Types – Taming Control-Flow through Linear Effect

Handlers. Technical Report MSR-TR-2023-42. Microsoft Research.

William D. Clinger. 2003. Implementation of unwind-protect in Portable Scheme. (2003). http://www.ccs.neu.edu/home/

will/UWESC/uwesc.sch

Paulo Emílio de Vilhena and François Pottier. 2023a. A Type System for Effect Handlers and Dynamic Labels. In Programming
Languages and Systems, Thomas Wies (Ed.). Springer Nature Switzerland, Cham, 225–252. doi:10.1007/978-3-031-30044-

8_9

Paulo Emílio de Vilhena and François Pottier. 2023b. A Type System for Effect Handlers and Dynamic Labels. (2023).

https://devilhena-paulo.github.io/files/tes-slides.pdf

Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias Felleisen. 2007. Adding Delimited and Composable Control

to a Production Programming Environment. In Proceedings of the International Conference on Functional Programming
(Freiburg, Germany). Association for Computing Machinery, New York, NY, USA, 165–176. doi:10.1145/1291151.1291178

Daniel P. Friedman and Christopher T. Haynes. 1985. Constraining control. In Proceedings of the 12th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (NewOrleans, Louisiana, USA) (POPL ’85). Association for Computing

Machinery, New York, NY, USA, 245–254. doi:10.1145/318593.318654

Daniel Hillerström, Filip Koprivec, and Philipp Schuster. 2023. Effect handlers benchmarks suite. https://github.com/effect-

handlers/effect-handlers-bench

Graham Hutton and Erik Meijer. 1998. Monadic Parsing in Haskell. Journal of Functional Programming 8, 4 (July 1998),

437–444.

Steve Klabnik and Carol Nichols. 2023. The Rust Programming Language. No Starch Press.

Daan Leijen. 2014. Koka: Programming with Row Polymorphic Effect Types, In Proceedings of the Workshop on Mathemat-

ically Structured Functional Programming. Electronic Proceedings in Theoretical Computer Science. doi:10.4204/eptcs.153.8
Daan Leijen. 2016. Algebraic Effects for Functional Programming. Technical Report. MSR-TR-2016-29. Microsoft Research

technical report.

Daan Leijen. 2017. Implementing Algebraic Effects in C. In Proceedings of the Asian Symposium on Programming Languages
and Systems. Springer International Publishing, Cham, Switzerland, 339–363. doi:10.1007/978-3-319-71237-6_17

Daan Leijen. 2018. Algebraic Effect Handlers with Resources and Deep Finalization. Technical Report MSR-TR-2018-10.

Microsoft Research. 35 pages.

Paul Blain Levy. 2001. Call-by-push-value. Ph. D. Dissertation. Queen Mary and Westfield College, University of London.

https://pblevy.github.io/papers/thesisqmwphd.pdf Research Report No. RR-01-03.

J. M. Lucassen and D. K. Gifford. 1988. Polymorphic Effect Systems. In Proceedings of the Symposium on Principles of
Programming Languages (San Diego, California, USA) (POPL ’88). Association for Computing Machinery, New York, NY,

USA, 47–57. doi:10.1145/73560.73564

Leo Osvald, Grégory Essertel, Xilun Wu, Lilliam I González Alayón, and Tiark Rompf. 2016. Gentrification gone too far?

affordable 2nd-class values for fun and (co-) effect. In Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages and Applications. ACM, New York, NY, USA, 234–251. doi:10.1145/3022671.2984009

David Peter. 2023. hyperfine. https://github.com/sharkdp/hyperfine

Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerström, KC Sivaramakrishnan, Matija Pretnar,

and Sam Lindley. 2023. Continuing WebAssembly with Effect Handlers. 7, OOPSLA2, Article 238 (oct 2023), 26 pages.

doi:10.1145/3622814

Kent Pitman. 2003. Unwind-Protect versus Continuations. (2003). http://www.nhplace.com/kent/PFAQ/unwind-protect-vs-

continuations-original.html

Gordon Plotkin and Matija Pretnar. 2009. Handlers of algebraic effects. In European Symposium on Programming. Springer-
Verlag, 80–94. doi:10.1007/978-3-642-00590-9_7

Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4 (2013).
doi:10.2168/LMCS-9(4:23)2013

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/3158096
https://doi.org/10.1145/3527320
https://doi.org/10.1145/3428194
http://www.ccs.neu.edu/home/will/UWESC/uwesc.sch
http://www.ccs.neu.edu/home/will/UWESC/uwesc.sch
https://doi.org/10.1007/978-3-031-30044-8_9
https://doi.org/10.1007/978-3-031-30044-8_9
https://devilhena-paulo.github.io/files/tes-slides.pdf
https://doi.org/10.1145/1291151.1291178
https://doi.org/10.1145/318593.318654
https://github.com/effect-handlers/effect-handlers-bench
https://github.com/effect-handlers/effect-handlers-bench
https://doi.org/10.4204/eptcs.153.8
https://doi.org/10.1007/978-3-319-71237-6_17
https://pblevy.github.io/papers/thesisqmwphd.pdf
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/3022671.2984009
https://github.com/sharkdp/hyperfine
https://doi.org/10.1145/3622814
http://www.nhplace.com/kent/PFAQ/unwind-protect-vs-continuations-original.html
http://www.nhplace.com/kent/PFAQ/unwind-protect-vs-continuations-original.html
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.2168/LMCS-9(4:23)2013

Dynamic Wind for Effect Handlers 377:27

Matija Pretnar. 2015. An Introduction to Algebraic Effects and Handlers. Invited tutorial paper. Electronic Notes in Theoretical
Computer Science 319 (2015), 19–35. doi:10.1016/j.entcs.2015.12.003 The 31st Conference on theMathematical Foundations

of Programming Semantics (MFPS XXXI)..

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In Proceedings of the IFIP World Computer
Congress. Elsevier (North-Holland), Amsterdam, The Netherlands, 513–523.

Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. 2022. Region-based Resource Management

and Lexical Exception Handlers in Continuation-Passing Style. In Programming Languages and Systems: 31st European
Symposium on Programming, ESOP 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2–7, 2022, Proceedings (Munich, Germany). Springer-Verlag, Berlin, Heidelberg,

492–519. doi:10.1007/978-3-030-99336-8_18

Dorai Sitaram. 2003. Unwind-protect in portable Scheme. In Proceedings of the 4th Workshop on Scheme and Functional
Programming (2003-11-07) (Tech. Rep., UUCS-03-023), Matthew Flatt (Ed.). 48–52.

KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting Effect

Handlers onto OCaml. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 206–221. doi:10.

1145/3453483.3454039

Bjarne Stroustrup. 2013. The C++ programming language. Pearson Education.

Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garrett Morris. 2024. Soundly Handling Linearity. Proc. ACM Program.
Lang. 8, POPL, Article 54 (Jan. 2024), 29 pages. doi:10.1145/3632896

Orpheas van Rooij and Robbert Krebbers. 2025. Affect: An Affine Type and Effect System. Proc. ACM Program. Lang. 9,
POPL, Article 5 (Jan. 2025), 29 pages. doi:10.1145/3704841

David Voigt, Philipp Schuster, and Jonathan Immanuel Brachthäuser. 2025. Dynamic Wind for Effect Handlers (Artifact).
doi:10.5281/zenodo.16901700

Philip Wadler. 1989. Theorems for free!. In Proceedings of the Conference on Functional Programming Languages and Computer
Architecture. ACM, New York, NY, USA, 347–359.

Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-safe Effect Handlers via Tunneling. Proc. ACM Program. Lang. 3,
POPL, Article 5 (Jan. 2019), 29 pages. doi:10.1145/3290318

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

https://doi.org/10.1016/j.entcs.2015.12.003
https://doi.org/10.1007/978-3-030-99336-8_18
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3632896
https://doi.org/10.1145/3704841
https://doi.org/10.5281/zenodo.16901700
https://doi.org/10.1145/3290318

377:28 Voigt, Schuster, and Brachthäuser

A Appendix
A.1 Proof: Resource Safety
For readability, we re-state the theorem and definitions.

active(•) = ∅
active(#l F :: E) = { l } ∪ active(E)
active(#l { □ } with { x ⇒ s } :: E) = active(E)
active(F :: E) = active(E)

active_open(M) := ∀li ∈ active(M .E), M .R(li) = 1

inactive_closed(M) := ∀li ∈ R \ active(M .E), M .R(li) = 0

The extractor functions M .R and M .E are defined in the obvious way.

Theorem A.1 (Resource Safety). If active_open(M) and inactive_closed(M) and M −→ M′,
then active_open(M′) and inactive_closed(M′).

Proof. By case analysis on M −→ M′
.

Case return’:
We have M = ⟨ return v #l F :: E R ⟩ and M′ = ⟨ s[x ↦→ v] E′ R′ ⟩. We further know

that active(E) \ active(E′) = { l } since the finalizer frame F is popped from the stack and thus

now longer active. Therefore proving inactive_closed(M′) only amounts to showing that R′ (l) = 0

which is trivially true by construction. By assumption we know that all other resources are closed

and active_open(M′) is trivially true by assumption as well since active(E) ⊆ active(E′).
Case try:

We have M = ⟨ try { f ⇒ s } with h E ⟩ and

M′ = ⟨ s[f ↦→ #l cap] #l { □} with { (Ð⇀x , k) ⇒ s } :: F (h) :: E ⟩

We further know that active(E′) \ active(E) = { l } since a new finalizer frame is pushed onto the

stack. Thus, we only need to show that R′ (l) = 1, which is true by construction. The remainding

proof goals follow by assumption.

Case suspend:
We have M = ⟨ #l cap(Ð⇀v) #l′ F :: E↬ K R ⟩ and

M′ = ⟨ F .suspend #l unwind(Ð⇀v , #l′ F , K) :: E R(l′) = 0 ⟩

Since again active(E) \ active(E′) = { l }, we only need to show that R′ (l) = 0 which is again

true by construction. Showing active_open(M′) follows by assumption.

Case suspend’:
We have M = ⟨ return v #l unwind(Ð⇀v , F , K) :: E ⟩ and

M′ = ⟨ #l cap(Ð⇀v) E↬ (F , v) :: K ⟩

Since active(#l unwind(Ð⇀v , F , K) :: E) = active(E), the proof goals directly follow from as-

sumption.

Case resume’:
We have M = ⟨ return v E↫ (F , v) :: K ⟩ and

M′ = ⟨ F .resume[x ↦→ v] # rewind(v, F , K) :: E ⟩

Since active(E) = active(# rewind(v, F , K) :: E), the proof goals directly follow from assump-

tion.

Case resume’:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:29

We haveM = ⟨ return v # rewind(v′, F , K) :: E ⟩ andM′ = ⟨ return v′ F :: E↫ K ⟩.
Since active(E′) \ active(E) = { l }, we only need to show thatR′ (l) = 1 for proving active_open(M′),
which is true by construction. Showing inactive_closed(M′) follows by assumption since

R′ \ active(M′) ⊆ R \ active(M)
The remaining cases have that active(M) = active(M′) and no new labels are introduced to R,

thus the proof goals directly follow from assumption. □

A.2 Abstract Machine Typing
For proving the theorems of progress and preservation, we need to add a type system to the abstract

machine and its frames.

Figure 10 defines the rules for typing the abstract machine and continuations. We start by first

discussing the block typing rules and then work our way towards the more complex stack and

continuation typing rules.

For typing a capability of the form #l cap with rule B-Cap, we look up the label l in the label

environment Ξ to find its annotated type. Typing a # resume block with B-Resume is more

involved. Given that the handler h introduces a capability of type
Ð⇀𝜏 i → 𝜏0 and we can derive that

the continuation K has the type 𝜏0 → 𝜏 , we may conclude that # resume(l, h, K) has the type
𝜏0 → 𝜏 rt . Notice that the continuation K expects a value of type 𝜏0, whereas the capability with the

label l promises to yield a value of type 𝜏0. Due to the return clause in h with type 𝜏 ⇒ 𝜏 rt , the

result of resuming continuation is altered to yield a value of 𝜏 rt .

Next, we turn to the frame typing rules. For checking the type of a frame F against a frame/stack

type 𝜏1 ⇝ 𝜏2, we need to provide a label environment Ξ containing the labels of the capabilities

in scope. Being the most simple, the rule F-Seq checks that a sequencing frame val x = □; s
has the type 𝜏1 ⇝ 𝜏2. For this conclusion to hold, we need to derive that s has the type 𝜏2 with
x : 𝜏1 in scope. The rule F-Unwind allows use to conclude that an unwind frame of the form

#l unwind(Ð⇀v , F , K) has the type 𝜏 sp ⇝ 𝜏 rt . For that, we need type check the values
Ð⇀v and

ensure that the label l is bound in Ξ. Further, we must type check the finalizer F such that its

type composes with the type of the continuation K . It is instructive to recall the semantics of

the unwind frame. The #l unwind(Ð⇀v , F , K) frame is pushed onto the runtime stack by the

stepping rule (suspend) when a capability is called, the machine is in unwind mode and encounters a

finalizer frame. The unwind frame serves as a reminder to later continue unwinding the stack onto

the continuation K after pushing the handler frame and the result v : 𝜏 sp of the suspend clause

onto the continuation. Dually, the rule F-Rewind type checks a rewind frame # rewind(v, F , K)
against the type Unit⇝ 𝜏 rt . Recall that the rewind frame is the dual of the unwind frame. It is

pushed onto the stack during rewind mode such that when encountered again after evaluating the

resume clause, the machine is put into unwind mode again such that return v′ is returned to the

context where K is rewound onto the current stack E with the finalizer F pushed on top.

The machine typing rules ⊢ m ⟨ s | E | K ⟩: 𝜏 receive a machine and a stack type 𝜏1⇝ 𝜏2. The

rule M-Normal checks the stack type of a machine m = ⟨ s | E ⟩ in reduction mode. Given that

s is a value of type 𝜏1 and E has the stack type 𝜏1 ⇝ 𝜏3, m : 𝜏3 can be concluded. For a machine

m = ⟨ s | E↬ K ⟩ in unwind mode, the rule M-Unwind allows us to conclude that m : 𝜏3 given

that s : 𝜏1, the stack E has the type 𝜏2 ⇝ 𝜏3 and the continuation K has the type K : 𝜏1⇝ 𝜏2. Note

that the types of the continuation and stack compose such that the result is of type 𝜏3. The rule

M-Rewind is similar.

The rules ⊢ ctx E : 𝜏 ⇝ 𝜏 | Ξ for typing a stack E against a stack type 𝜏 ⇝ 𝜏 and a label en-

vironment containing the label of each handler present on the stack. The rule E-Empty types

the empty stack, corresponding to the identity. E-Frame types a stack F :: Σ with an arbitrary

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:30 Voigt, Schuster, and Brachthäuser

stack frame F on top. Notice that the type of the frame 𝜏2 ⇝ 𝜏3 and that of the stack 𝜏1 ⇝ 𝜏2
compose, yielding the resulting type 𝜏1⇝ 𝜏3. For typing checking a stack E with a handler frame

#l { □ } with { (Ð⇀x , k) ⇒ s } on top against 𝜏1⇝ 𝜏2, the rule E-Handler tells us that E : 𝜏1 ⇝ 𝜏2
and that the handler is of type 𝜏1 as well, while having

ÐÐÐ⇀x : 𝜏 i and the continuation k : 𝜏0 → 𝜏1 in

scope. Additionally, the label l is appended to the label environment Ξ as output.

The continuation typing rules Ξ ⊢ cnt K : 𝜏 ⇝ 𝜏 | Ξ are very similar to the stack typing rules,

except that they receive a label environment Ξ as input as well, corresponding to all the labels that

are in scope on the stack the continuation is eventually rewound onto. The rules for typing the

empty continuation • and the continuation F :: K are is similar to the corresponding rules for

stacks. C-Handler for typing continuation K with a handler on top is more interesting. First, we

need to show that the remaining continuation has the type 𝜏1 ⇝ 𝜏2, given that the label l from the

handler frame is in scope for the remainder of the continuation. We also need to show that the

handler is well-typed similar to E-Handler. As a result, we may conclude that the overall type

of the continuation is 𝜏1 ⇝ 𝜏2 with the label l added to the output label environment. Notice that

compared to the E-Hanlder, the type of the language-level continuation k changed and has the

same return type as the continuation K .

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:31

Block Typing. Γ Δ Ξ ⊢ b : 𝜎

l : Ð⇀𝜏 i → 𝜏0 ∈ Ξ

Γ Δ Ξ ⊢ #l cap :
Ð⇀𝜏 i → 𝜏0

[B-Cap]

Ξ, l : Ð⇀𝜏 i → 𝜏0 ⊢ cnt K : 𝜏0 ⇝ 𝜏 Ξ′ Γ, ÐÐÐ⇀x : 𝜏 i Δ, k : 𝜏0 → 𝜏 Ξ ⊢ s : 𝜏

Γ Δ Ξ ⊢ # resume(#l { □ } with { (Ð⇀x , k) ⇒ s }, K) : 𝜏0 → 𝜏
[B-Resume]

Frame Typing. Ξ ⊢ frm F : 𝜏 ⇝ 𝜏

x : 𝜏1 • Ξ ⊢ s : 𝜏2

Ξ ⊢ frm val x = □; s : 𝜏1 ⇝ 𝜏2
[F-Seq]

ÐÐÐÐÐÐ⇀• ⊢ v : 𝜏 i l : Ð⇀𝜏 i → 𝜏0 ∈ Ξ
Ξ ⊢ F F : 𝜏 ⇝ 𝜏 rt 𝜏 sp Ξ ⊢ cnt K : 𝜏0 ⇝ 𝜏 Ξ′

Ξ ⊢ frm #l unwind(Ð⇀v , F , K) : 𝜏 sp ⇝ 𝜏 rt
[F-Unwind]

• ⊢ v : 𝜏0 Ξ ⊢ F F : 𝜏 ⇝ 𝜏 rt 𝜏 sp
Ξ ⊢ cnt K : 𝜏0 ⇝ 𝜏 Ξ′

Ξ ⊢ frm # rewind(v, F , K) : Unit⇝ 𝜏 rt
[F-Rewind]

Finalizer Typing. Ξ ⊢ F F : 𝜏 ⇝ 𝜏 𝜏

• • Ξ ⊢ ssp : 𝜏 sp x : 𝜏 sp • Ξ ⊢ srs : Unit x : 𝜏 • Ξ ⊢ srt : 𝜏 rt

Ξ ⊢ F { □ } on suspend { ssp } on resume { x ⇒ srs } on return { x ⇒ srt } : 𝜏 ⇝ 𝜏 rt 𝜏 sp
[F-Finalizer]

Machine Typing. ⊢ m M : 𝜏

• • Ξ ⊢ s : 𝜏1 ⊢ ctx E : 𝜏1 ⇝ 𝜏3 Ξ

⊢ m ⟨ s E ⟩ : 𝜏3
[M-Reduction]

• • Ξ ⊢ #l cap(Ð⇀v) : 𝜏1 Ξ ⊢ cnt K : 𝜏1 ⇝ 𝜏2 Ξ′ ⊢ ctx E : 𝜏2 ⇝ 𝜏3 Ξ

⊢ m ⟨ #l cap(Ð⇀v) E↬ K ⟩ : 𝜏3
[M-Unwind]

• • Ξ ⊢ return v : 𝜏1 Ξ ⊢ cnt K : 𝜏1 ⇝ 𝜏2 Ξ′ ⊢ ctx E : 𝜏2 ⇝ 𝜏3 Ξ

⊢ m ⟨ return v E↫ K ⟩ : 𝜏3
[M-Rewind]

Fig. 10. Typing rules for the runtime blocks, frames and abstract machine of System Ξ↬

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:32 Voigt, Schuster, and Brachthäuser

Stack Typing. ⊢ ctx E : 𝜏 ⇝ 𝜏 Ξ

⊢ ctx • : 𝜏 ⇝ 𝜏 ∅
[E-Empty] Ξ ⊢ frm F : 𝜏1 ⇝ 𝜏2 ⊢ ctx E : 𝜏2 ⇝ 𝜏3 Ξ

⊢ ctx F :: E : 𝜏1 ⇝ 𝜏3 Ξ
[E-Frame]

⊢ ctx E : 𝜏1 ⇝ 𝜏2 Ξ ÐÐÐ⇀x : 𝜏 i k : 𝜏0 → 𝜏1 Ξ ⊢ s : 𝜏1

⊢ ctx #l { □ } with { (Ð⇀x , k) ⇒ s } :: E : 𝜏1 ⇝ 𝜏2 Ξ, l : Ð⇀𝜏 i → 𝜏0
[E-Handler]

⊢ ctx E : 𝜏 rt ⇝ 𝜏2 Ξ Ξ ⊢ F F : 𝜏1 ⇝ 𝜏 rt 𝜏 sp

⊢ ctx F :: E : 𝜏1 ⇝ 𝜏2 Ξ
[E-Finalizer]

Continuation Typing. Ξ ⊢ cnt K : 𝜏 ⇝ 𝜏 Ξ

Ξ ⊢ cnt • : 𝜏 ⇝ 𝜏 ∅
[K-Empty] Ξ ⊢ frm F : 𝜏2 ⇝ 𝜏3 Ξ ⊢ cnt K : 𝜏1 ⇝ 𝜏2 Ξ′

Ξ ⊢ cnt F :: K : 𝜏1 ⇝ 𝜏3 Ξ′ [K-Frame]

Ξ, l : Ð⇀𝜏 i → 𝜏0 ⊢ cnt K : 𝜏1 ⇝ 𝜏2 Ξ′ ÐÐÐ⇀x : 𝜏 i k : 𝜏0 → 𝜏2 Ξ ⊢ s : 𝜏2

Ξ ⊢ cnt #l { □ } with { (Ð⇀x , k) ⇒ s } :: K : 𝜏1 ⇝ 𝜏2 Ξ′, l : Ð⇀𝜏 i → 𝜏0
[K-Handler]

Ξ ⊢ cnt K : 𝜏1 ⇝ 𝜏2 Ξ′ Ξ ⊢ F F : 𝜏2 ⇝ 𝜏 rt 𝜏 sp • ⊢ v : 𝜏 sp

Ξ ⊢ cnt (F , v) :: K : 𝜏1 ⇝ 𝜏 rt Ξ′ [K-Finalizer]

Fig. 11. Typing rules of the stack E and continuation K of the abstract machine of System Ξ↬

A.3 Proof: Progress
For completness, we restate the Progress Theorem 3.3.

TheoremA.2 (Progress). If ⊢ m m : 𝜏 , then there either exists a value v such thatm = ⟨ return v • ⟩
or a machine m′ with m −→ m′.

Proof. By case distinction on the derivation of ⊢ m : 𝜏 :

CaseM-Normal:

We are given • • Ξ ⊢ s : 𝜏1 and ⊢ ctx E : 𝜏1⇝ 𝜏3 Ξ. By case distinction on the typing

derivation of • • Ξ ⊢ s : 𝜏1:
Sub-Case Val:

Apply (push).
Sub-Case Ret:

We have s = return v. By case distinction on E:
Sub-Sub-Case 𝐸 = :

Immediate since m = ⟨ return v • ⟩.
Sub-Sub-Case 𝐸 = F ::: 𝐸′:

Apply (return’).
Sub-Sub-Case 𝐸 = #𝑙 {•} with {(Ð⇀𝑥 , 𝑘) ⇒ 𝑠𝑡𝑚𝑡 } ::: 𝐸′:

Apply (return).
Sub-Sub-Case 𝐸 = #𝑙𝑢𝑛𝑤𝑖𝑛𝑑 (Ð⇀𝑣 , F , 𝐾) ::: 𝐸′:

Apply (suspend’).
Sub-Sub-Case 𝐸 = #𝑟𝑒𝑤𝑖𝑛𝑑 (𝑣 ′, F , 𝐾) ::: 𝐸′:

Apply (resume’).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:33

Sub-Case App:
We have s = b. By case distinction on b:

Sub-Sub-Case 𝑏 = 𝑓 :

Contradiction since Δ = •.
Sub-Sub-Case 𝑏 = {(ÐÐÐ⇀𝑥𝑖 : 𝜏𝑖 ,

ÐÐÐ⇀
𝑓𝑗 : 𝜎 𝑗) ⇒ 𝑠𝑡𝑚𝑡}:

Apply (cong) with (app).
Sub-Sub-Case 𝑏 = #𝑐𝑎𝑝 (Ð⇀𝑣):

Apply (cap)
Sub-Sub-Case 𝑏 = #𝑟𝑒𝑠𝑢𝑚𝑒 (𝑙, F , 𝐾):

Apply (resume).
Sub-Case Def:

We have • • Ξ ⊢ b : 𝜎 and • f : 𝜎 Ξ ⊢ s : 𝜏 ′. If b = f we have a contradiction since

Δ = •. Otherwise, we may apply (cong) with (def).
CaseM-Unwind:

We know

(1) m = ⟨ #l cap(Ð⇀v) E↬ K ⟩
(2) • • Ξ ⊢ #l cap(Ð⇀v) : 𝜏1
(3) Ξ ⊢ cnt K : 𝜏1 ⇝ 𝜏2
(4) ⊢ ctx E : 𝜏2⇝ 𝜏3 Ξ

By case distinction on E:
Sub-Case 𝐸 = •:

Contradiction, since by inversion on (4), we know that Ξ = • but then (2) cannot hold.

Sub-Case 𝐸 = F ::: 𝐸′:
Apply (suspend)

Sub-Case 𝐸 = #𝑙 ′ {•} with {(Ð⇀𝑥 , 𝑘) ⇒ 𝑠𝑡𝑚𝑡 } ::: 𝐸′:
If l = l′ apply (handle), otherwise (unwind’)
Sub-Case 𝐸 = 𝐹 :: 𝐸′:

Apply (unwind).
CaseM-Rewind:

We have

(1) m = ⟨ #l cap(Ð⇀v) E↬ K ⟩
(2) • • Ξ ⊢ #l cap(Ð⇀v) : 𝜏1
(3) Ξ ⊢ cnt K : 𝜏1 ⇝ 𝜏2
(4) ⊢ ctx E : 𝜏2⇝ 𝜏3 Ξ

By case distinction on K :
Sub-Case 𝐾 = •:

Appply (stop)
Sub-Case 𝐾 = F ::: 𝐾 ′

:

Apply (resume’)
Sub-Case 𝐾 = #𝑙 ′ {•} with {(Ð⇀𝑥 , 𝑘) ⇒ 𝑠𝑡𝑚𝑡 } ::: 𝐾 ′

:

(rewind’)
Sub-Case 𝐸 = 𝐹 :: 𝐸′:

Apply (rewind). □

A.4 Proof: Preservation
We need some standard auxiliary lemmas regarding the substitution of values and blocks.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:34 Voigt, Schuster, and Brachthäuser

Lemma A.3 (Substitution Lemma - Values).

(1) Given a statement Γ, x : 𝜏1 Δ Ξ ⊢ s : 𝜏2 and a value Γ ⊢ v : 𝜏1, then
Γ Δ Ξ ⊢ s[x ↦→ v] : 𝜏2.

(2) Given an expression Γ, x : 𝜏1 ⊢ e : 𝜏2 and a value Γ ⊢ v : 𝜏1, then
Γ Δ Ξ ⊢ e[x ↦→ v] : 𝜏2.

(3) Given a block Γ, x : 𝜏1 Δ Ξ ⊢ b : 𝜏2 and a value Γ ⊢ v : 𝜏1, then
Γ Δ Ξ ⊢ b[x ↦→ v] : 𝜏2.

Lemma A.4 (Substitution Lemma - Blocks).

(1) Given a statement Γ Δ, f : 𝜎 Ξ ⊢ s : 𝜏 and a block Γ Δ Ξ ⊢ b : 𝜎 , then
Γ Δ Ξ ⊢ s[f ↦→] : 𝜏 .

(2) Given a block Γ Δ, f : 𝜎2 Ξ ⊢ b1 : 𝜎1 and a block Γ Δ Ξ ⊢ b2 : 𝜎2, then
Γ Δ Ξ ⊢ b1 [f ↦→ b2] : 𝜎1.

We restate the Preservation Theorem 3.4 for better readability.

Theorem A.5 (Preservation). If ⊢ m m : 𝜏 and there exists m −→ m′, then ⊢ m m′
: 𝜏 .

Proof. By case analysis on the derivation of ⊢ m m : 𝜏 , followed by a case analysis onm −→ m′
.

CaseM-Reduction:

By case anaylsis on m −→ m′
:

Sub-Case pop:
We know

(1) m = ⟨ return v val x = □; s :: E ⟩: 𝜏
(2) m′ = ⟨ s[x ↦→ v] E ⟩

By inversion on (1), we get

(3) • • Ξ ⊢ return v : 𝜏1
(4) ⊢ ctx val x = □; s :: E : 𝜏1⇝ 𝜏2 Ξ

By inversion on (3), we know

(5) • ⊢ v : 𝜏1

By inversion on (4)

(6) Ξ ⊢ frm val x = □; s : 𝜏1⇝ 𝜏2
(7) ⊢ ctx E : 𝜏2⇝ 𝜏

By inversion on (6)

(8) x : 𝜏1 • Ξ ⊢ s : 𝜏2
By Lemma A.3 on (5) and (6)

(9) • • Ξ ⊢ s[x ↦→ v] : 𝜏2
Finally, by M-Reduction applied to (7), (9), we get the desired result.

Sub-Case push:
We know by assumption

(1) m = ⟨ val x = s1; s2 E ⟩: 𝜏
(2) m′ = ⟨ s1 val x = □; 𝜎2 :: E ⟩

By inversion on (1)

(3) • • Ξ ⊢ val x = s1; s2 : 𝜏1
(4) ⊢ ctx E : 𝜏1⇝ 𝜏 Ξ

By inversion on (3)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:35

(5) • • Ξ ⊢ s1 : 𝜏3
(6) x : 𝜏3 • Ξ ⊢ s2 : 𝜏1

Apply F-Seq on (3)

(7) Ξ ⊢ frm val x = □; s : 𝜏3 ⇝ 𝜏1

Apply E-Frame to (4) and (7)

(8) ⊢ ctx val x = □; s :: E : 𝜏3 ⇝ 𝜏

Apply M-Reduction to (5) and (8) to get the desired result.

Sub-Case return:
By assumption, we know

(1) m = ⟨ return v #l { □ } with { (Ð⇀x , k) ⇒ s } :: E ⟩ : 𝜏
(2) m′ = ⟨ return v E ⟩

By inversion on (1)

(3) • • Ξ ⊢ return v : 𝜏1
(4) ⊢ ctx #l { □ } with { (Ð⇀x , k) ⇒ s } :: E : 𝜏

By inversion on (4)

(5) ⊢ ctx E : 𝜏1⇝ 𝜏 Ξ
(6)
ÐÐÐ⇀x : 𝜏 i k : 𝜏0 → 𝜏 Ξ ⊢ s : 𝜏1

By applying [M-Reduction] to (3) and (5) we get the desired result.

Sub-Case return’:
By assumption, we know

(1) m = ⟨ return v F :: E ⟩: 𝜏
(2) m′ = ⟨ srt [x ↦→ v] E ⟩

By inversion on (1)

(3) • • Ξ ⊢ return v : 𝜏1
(4) ⊢ ctx F :: E : 𝜏1 ⇝ 𝜏

By inversion on (4)

(5) ⊢ ctx E : 𝜏 rt ⇝ 𝜏 Ξ
(6) Ξ ⊢ F F : 𝜏1⇝ 𝜏 rt 𝜏 sp

By inversion on (6)

(7) • • Ξ ⊢ ssp : 𝜏 sp
(8) x : 𝜏 sp • Ξ ⊢ srs : Unit
(9) x : 𝜏1 • Ξ ⊢ srt : 𝜏 rt

By inversion on (3)

(10) • ⊢ v : 𝜏1

By Lemma A.3 with (9) and (10)

(11) • • Ξ ⊢ srt [x ↦→ v] : 𝜏 rt
By [M-Reduction] applied to (5) and (11) we get the desired result.

Sub-Case try:
By assumption, we know

(1) m = ⟨ try { f ⇒ s } with h E ⟩: 𝜏
(2) m′ = ⟨ s[f ↦→ #l cap] #l { □ } with { (Ð⇀x , k) ⇒ s } :: { □ } F (h) :: E ⟩

By inversion on (1)

(3) • • Ξ ⊢ try { f ⇒ s } with h : 𝜏1

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:36 Voigt, Schuster, and Brachthäuser

(4) ⊢ ctx E : 𝜏1⇝ 𝜏 Ξ

By inversion on (3)

(5) • f :
Ð⇀𝜏 i → 𝜏0 Ξ, l : Ð⇀𝜏 i → 𝜏0 ⊢ s : 𝜏2

(6) • • Ξ ⊢ h :
Ð⇀𝜏 i → 𝜏0 𝜏2 ⇒ 𝜏1 𝜏 sp

By inversion on (6)

(7)
ÐÐÐ⇀x : 𝜏 i k : 𝜏0 → 𝜏2 Ξ ⊢ sh : 𝜏2

(8) • • Ξ ⊢ ssp : 𝜏 sp
(9) x : 𝜏 sp • Ξ ⊢ srs : Unit
(10) x : 𝜏2 • Ξ ⊢ srt : 𝜏1

By using [B-Cap], we get

(11) • • Ξ, l : Ð⇀𝜏 i → 𝜏0 ⊢ #l cap :
Ð⇀𝜏 i → 𝜏0

By applying Lemma A.4 to (5) with (11), we get

(12) • • Ξ, l : Ð⇀𝜏 i → 𝜏0 ⊢ s[f ↦→ #l cap] : 𝜏2
By applying F-Finalizer to (8), (9) and (10)

(13) Ξ ⊢ F F : 𝜏2⇝ 𝜏1 𝜏 sp

By applying E-Finalizer to (4) and (13)

(14) ⊢ ctx F :: E : 𝜏2 ⇝ 𝜏 Ξ

By applying E-Handler to (7) and (14)

(15) ⊢ ctx #l { □ } with { (Ð⇀x , k) ⇒ sh } :: F :: E : 𝜏2 ⇝ 𝜏 Ξ, l : Ð⇀𝜏 i → 𝜏0

By applying [M-Reduction] to (12) and (15), we get the desired result.

Sub-Case cap:
(1) m = ⟨ #l cap(Ð⇀v) E ⟩: 𝜏
(2) m′ = ⟨ #l cap(Ð⇀v) E↬ • ⟩

By inversion on (1)

(3) • • Ξ ⊢ #l cap(Ð⇀v) : 𝜏1
(4) ⊢ ctx E : 𝜏1⇝ 𝜏 Ξ

By K-Empty

(5) Ξ ⊢ cnt • : 𝜏1⇝ 𝜏1

Then by [M-Unwind] applied to (3), (4) and (5), we get the desired result.

Sub-Case suspend’:
We have

(1) m = ⟨ return v #l unwind(Ð⇀v , F , K) :: E ⟩ : 𝜏
(2) m′ = ⟨ #l cap(Ð⇀v) E↬ (F , v) :: K ⟩

By inversion on (1)

(3) • • Ξ ⊢ return v : 𝜏1
(4) ⊢ ctx #l unwind(Ð⇀v , F , K) :: E : 𝜏1⇝ 𝜏 Ξ

By inversion on (3)

(5) • ⊢ v : 𝜏1

By inversion on (4)

(6) ⊢ ctx E : 𝜏 rt ⇝ 𝜏 Ξ
(7) Ξ ⊢ frm #l unwind(Ð⇀v , F , K) : 𝜏 sp ⇝ 𝜏 rt

By inversion on (7)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:37

(8)
ÐÐÐÐÐÐ⇀• ⊢ v : 𝜏 i

(9) l : Ð⇀𝜏 i → 𝜏0 ∈ Ξ
(10) Ξ ⊢ F F : 𝜏 ′ ⇝ 𝜏 rt 𝜏 sp
(11) Ξ ⊢ cnt K : 𝜏0 ⇝ 𝜏 ′ Ξ′

Applying K-Finlizer to (5), (10) and (11)

(12) Ξ ⊢ cnt (F , v) :: K : 𝜏0 ⇝ 𝜏 rt Ξ
(13) • • Ξ ⊢ #l cap :

Ð⇀𝜏 i → 𝜏0

Applying App to (8) and (13) yields

(14) • • Ξ ⊢ #l cap(Ð⇀v) : 𝜏0
Finally, applying M-Unwind to (6), (12) and (14) yields the desired result.

Sub-Case resume’:
We know

(1) m = ⟨ return v # rewind(v′, F , K) :: E ⟩: 𝜏
(2) m′ = ⟨ return v′ F :: E↫ K ⟩

By inversion on (1)

(3) • • Ξ ⊢ return v : 𝜏1
(4) ⊢ ctx # rewind(v′, F , K) :: E : 𝜏1⇝ 𝜏 Ξ

By inversion on (4)

(5) Ξ ⊢ frm # rewind(v′, F , K) : Unit⇝ 𝜏 rt
(6) ⊢ ctx E : 𝜏 rt ⇝ 𝜏 Ξ

By inversion on (5)

(7) • ⊢ v′ : 𝜏0
(8) Ξ ⊢ F F : 𝜏 ′ ⇝ 𝜏 rt 𝜏 sp
(9) Ξ ⊢ cnt K : 𝜏0 ⇝ 𝜏 ′ Ξ′

Apply E-Finalizer to (6) and (8)

(10) ⊢ ctx F :: E : 𝜏 ′ ⇝ 𝜏

Apply Ret to

(11) • • Ξ ⊢ return v : 𝜏0

Apply M-Rewind to (9), (10) and .

Sub-Case cont:
We have

(1) m = ⟨ resume(#l { □ } with { (Ð⇀x , k) ⇒ s }, K) (v) E ⟩: 𝜏
(2) m′ = ⟨ return v #l { □ } with { (Ð⇀x , k) ⇒ s }↫ K ⟩

By inversion on (1)

(3) • • Ξ ⊢ # resume(#l { □ } with { (Ð⇀x , k) ⇒ s }, K) (v) : 𝜏1
(4) ⊢ ctx E : 𝜏1⇝ 𝜏 Ξ

By inversion on (3)

(5) • • Ξ ⊢ # resume(#l { □ } with { (Ð⇀x , k) ⇒ s }, K) : 𝜏0 → 𝜏1
(6) • • Ξ ⊢ v : 𝜏0

By inversion on (5)

(7) Ξ, l : Ð⇀𝜏 i → 𝜏0 ⊢ cnt K : 𝜏0⇝ 𝜏1 Ξ′

(8)
ÐÐÐ⇀x : 𝜏 i k : 𝜏0 → 𝜏1 Ξ ⊢ s : 𝜏1

By applying E-Handler to (4) and (8)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:38 Voigt, Schuster, and Brachthäuser

(9) ⊢ ctx #l { □ } with { (Ð⇀x , k) ⇒ s } :: E : 𝜏1 ⇝ 𝜏 Ξ, l : Ð⇀𝜏 i → 𝜏0

By applying Ret to (6)

(10) • • Ξ ⊢ return v : 𝜏0

By applying M-Rewind to (7), (9) and (10), we get the desired result.

CaseM-Unwind:

Sub-Case unwind:

We know by assumption

(1) m = ⟨ #l cap(Ð⇀v) F :: E↬ K ⟩ : 𝜏
(2) m′ = ⟨ #l cap(Ð⇀v) E↬ F :: K ⟩

By inversion on (1)

(3) • • Ξ ⊢ #l cap(Ð⇀v) : 𝜏1
(4) ⊢ ctx F :: E : 𝜏2⇝ 𝜏 Ξ
(5) Ξ ⊢ cnt K : 𝜏1 ⇝ 𝜏2 Ξ′

By inversion (4)

(6) Ξ ⊢ frm F : 𝜏2⇝ 𝜏 ′

(7) ⊢ ctx E : 𝜏 ′ ⇝ 𝜏 Ξ

By K-Frame on (5) and (6)

(8) Ξ ⊢ cnt F :: K : 𝜏1⇝ 𝜏 ′ Ξ′

Thus, by M-Unwind on (3), (7) and (8) we have

(10) ⟨ # cap(Ð⇀v) E↬ F :: K ⟩ : 𝜏
Sub-Case unwind’:

We know by assumption

(1) m = ⟨ #l cap(Ð⇀v) #l′ { □ } with { (Ð⇀x , k) ⇒ s } :: E↬ K ⟩: 𝜏
(2) m′ = ⟨ #l cap(Ð⇀v E↬ #l′ { □ } with { (Ð⇀x , k) ⇒ s } :: K ⟩

By inversion on (1)

(3) • • Ξ ⊢ #l cap(Ð⇀v) : 𝜏1
(4) Ξ ⊢ cnt K : 𝜏1 ⇝ 𝜏2 Ξ′

(5) ⊢ ctx #l′ { □ } with { (Ð⇀x , k) ⇒ s } :: E : 𝜏2⇝ 𝜏 Ξ

By inversion on (5)

(6) ⊢ ctx E : 𝜏2⇝ 𝜏 Ξ \ l′
(7)
ÐÐÐ⇀x : 𝜏 i k : 𝜏0 → 𝜏2 Ξ \ l′ ⊢ s : 𝜏2

By K-Handler on (4) and (7)

(8) Ξ \ l′ ⊢ cnt #l′ { □ } with { (Ð⇀x , k) ⇒ s } :: K : 𝜏1 ⇝ 𝜏2 Ξ, l′ : Ð⇀𝜏 i → 𝜏0

By inversion on (3)

(9) • • Ξ ⊢ #l cap :
Ð⇀𝜏 j → 𝜏1

(10)
ÐÐÐÐÐÐ⇀• ⊢ v : 𝜏 j

By inversion on (9)

(11) l ∈ Ξ
(12) l ∈ Ξ \ l′

Thus by B-Cap on (12)

(13) • • Ξ \ l′ ⊢ #l cap :
Ð⇀𝜏 j → 𝜏1

By App applied to (10) and (13)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:39

(14) • • Ξ \ l ⊢ #l cap(Ð⇀vj) : 𝜏1
Finally, by M-Unwind applied to (6), (8) and (6) we get the desired result.

Sub-Case handle:
We know

(1) m = ⟨ #l cap(Ð⇀v) #l { □ } with { (Ð⇀x , k) ⇒ s } :: E↬ K ⟩: 𝜏
(2) m′ = ⟨ s[ÐÐÐ⇀x ↦→ v, k ↦→ resume(#l′ { □ } with { (Ð⇀x , k) ⇒ s }, K)] E ⟩

By inversion on (1)

(3) • • Ξ ⊢ #l cap(Ð⇀v) : 𝜏1
(4) ⊢ ctx #l { □ } with { (Ð⇀x , k) ⇒ s } :: E : 𝜏2⇝ 𝜏 Ξ
(5) Ξ ⊢ cnt K : 𝜏1⇝ 𝜏2 Ξ′

By inversion on (4)

(6) ⊢ ctx E : 𝜏2⇝ 𝜏 Ξ \ l
(7)
ÐÐÐ⇀x : 𝜏 i k : 𝜏0 → 𝜏2 Ξ \ l ⊢ s : 𝜏2

By applying B-Resume to (5) and (7)

(8) • • Ξ \ l ⊢ # resume(#l { □ } with { (Ð⇀x , k) ⇒ s }, K) : 𝜏0 → 𝜏2

By inversion on (3)

(9)
ÐÐÐÐÐÐ⇀• ⊢ v : 𝜏 i

By Lemma A.4 on (7), Resume and Lemma [#lm-subst-value] on (7), (9)

(10) • • Ξ \ l ⊢ s[ÐÐÐ⇀x ↦→ v, k ↦→ resume(#l′ { □ } with { (Ð⇀x , k) ⇒ s }, K)] : 𝜏2
Finally, by applying E-Reduction to (6) and (10), we get the desired result.

Sub-Case suspend:
We know

(1) m = ⟨ #l cap(Ð⇀v) F :: E↬ K ⟩: 𝜏
(2) m′ = ⟨ 𝜎 sp #l unwind(Ð⇀v , F , K) :: E ⟩

By inversion on (1)

(3) • • Ξ ⊢ #l cap(Ð⇀v) : 𝜏1
(4) ⊢ ctx F :: E : 𝜏2⇝ 𝜏 Ξ
(5) Ξ ⊢ cnt K : 𝜏1 ⇝ 𝜏2 Ξ′

By inversion (4)

(6) ⊢ ctx E : 𝜏 rt ⇝ 𝜏 Ξ
(7) Ξ ⊢ F F : 𝜏1 ⇝ 𝜏 rt 𝜏 sp

By inversion (7)

(8) • • Ξ ⊢ ssp : 𝜏 sp
(9) x : 𝜏 sp • Ξ ⊢ srs : Unit
(10) x : 𝜏2 • Ξ ⊢ srt : 𝜏 rt

By inversion (3)

(11) l : Ð⇀𝜏 i → 𝜏1 ∈ Ξ
(12)
ÐÐÐÐÐÐÐ⇀• ⊢ v : 𝜏 i

By [F-Unwind] applied to (5), (7), (11) and (12)

(13) Ξ ⊢ frm #l unwind(Ð⇀v , F , K) : 𝜏 sp → 𝜏 rt

Applying [E-Frame] to (6) and (13) yields

(14) ⊢ ctx #l unwind(Ð⇀v , F , K) :: E : 𝜏 sp ⇝ 𝜏 Ξ

Finally, applying [M-Reduction] to (8) and (14) gives us the desired result.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

377:40 Voigt, Schuster, and Brachthäuser

CaseM-Rewind:

Sub-Case resume:
We know

(1) m = ⟨ return v E↫ (F , v′) :: K ⟩
(2) m′ = ⟨ srs # rewind(v, F , K) :: E ⟩

By inversion on (1)

(3) • • Ξ ⊢ return v : 𝜏1
(4) ⊢ ctx E : 𝜏 rt ⇝ 𝜏 Ξ
(5) Ξ ⊢ cnt (F , v) :: K : 𝜏1⇝ 𝜏 rt Ξ′

By inversion on (6)

(6) Ξ ⊢ cnt K : 𝜏1 ⇝ 𝜏2 Ξ′

(7) Ξ ⊢ F F : 𝜏2⇝ 𝜏 rt 𝜏 sp
(8) • ⊢ v : 𝜏 sp

By inversion on (7)

(9) • • Ξ ⊢ ssp : 𝜏 sp
(10) x : 𝜏 sp • Ξ ⊢ srs : Unit
(11) x : 𝜏2 • Ξ ⊢ srt : 𝜏 rt

By applying [F-Rewind] to (6), (7) and (8), we get

(12) Ξ ⊢ frm # rewind(v, F , K) : Unit⇝ 𝜏 rt

By applying [E-Frame] to (4) and (12), we get

(13) ⊢ ctx # rewind(v, F , K) :: E : Unit⇝ 𝜏 Ξ

By using Lemma [#lm-subst-value] with (8) and (10), we learn

(14) • • Ξ ⊢ srs [x ↦→ v] : Unit
Finally, by using [M-Reduction] with (14) and (13) we get the desired result.

Sub-Case rewind:

We know

(1) m = ⟨ return v E↫ F :: K ⟩: 𝜏
(2) m′ = ⟨ return v F :: E↫ K ⟩

By inversion on (1)

(3) • • Ξ ⊢ return v : 𝜏1
(4) Ξ ⊢ cnt F :: K : 𝜏1⇝ 𝜏2 Ξ′

(5) ⊢ ctx E : 𝜏2⇝ 𝜏3 Ξ

By inversion on (4)

(6) Ξ ⊢ frm F : 𝜏 ′
2
⇝ 𝜏2

(7) Ξ ⊢ cnt K : 𝜏1 ⇝ 𝜏 ′
2

Ξ′

By applying [E-Frame] on (5) and (6)

(8) ⊢ ctx F :: E : 𝜏 ′
2
⇝ 𝜏3 Ξ

Apply M-Rewind to (3), (7) and (8).

Sub-Case rewind’:

We know

(1) ⟨ return v E↫ #l { □ } with { (Ð⇀x , k) ⇒ s } :: K ⟩ : 𝜏
(2) ⟨ return v #l { □ } with { (Ð⇀x , k) ⇒ s } :: E↫ K ⟩

By inversion on (1)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

Dynamic Wind for Effect Handlers 377:41

(3) • • Ξ ⊢ return v : 𝜏1
(4) ⊢ ctx E : 𝜏2⇝ 𝜏 Ξ
(5) Ξ ⊢ cnt #l { □ } with { (Ð⇀x , k) ⇒ s } :: K : 𝜏1 ⇝ 𝜏2 Ξ′

By inversion on (5)

(6) Ξ, l : Ð⇀𝜏 i → 𝜏0 ⊢ cnt K : 𝜏1⇝ 𝜏2 Ξ \ l
(7)
ÐÐÐ⇀x : 𝜏 i k : 𝜏0 → 𝜏2 Ξ ⊢ s : 𝜏2

By applying [E-Handler] to (4) and (7)

(8) ⊢ ctx #l { □ } with { (Ð⇀x , k) ⇒ s } :: E : 𝜏2⇝ 𝜏 Ξ, l : Ð⇀𝜏 i → 𝜏0

We get the desired result by applying M-Rewind to (3), (6) and (8).

Sub-Case stop:
We know

(1) m = ⟨ return v E↫ • ⟩: 𝜏
(2) m′ = ⟨ return v E ⟩

By inversion on (1)

(3) • • Ξ ⊢ return v : 𝜏1
(4) ⊢ ctx E : 𝜏2⇝ 𝜏 Ξ
(5) Ξ ⊢ • : 𝜏1 ⇝ 𝜏2 Ξ′

By inversion on (5), we learn

(6) 𝜏1 = 𝜏2

Applying M-Reduction to (3) and (4) with (6) yields the desired result. □

Received 2025-03-26; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 377. Publication date: October 2025.

	Abstract
	1 Introduction
	2 Motivation
	2.1 The Fail Effect: Modeling Exceptions
	2.2 The Read Effect: Resuming Computation
	2.3 The Fork Effect: Resuming Multiple Times
	2.4 The Parser Effect: Composing Effect Handlers
	2.5 Backtracking Global State
	2.6 Resource Management
	2.7 Operational Intuition

	3 Formal Presentation
	3.1 Syntax
	3.2 Typing
	3.3 Semantics
	3.4 Properties

	4 Implementation
	4.1 Extended example: Combining Backtracking and Resource Management
	4.2 Tail-Resumption Optimization

	5 Performance Evaluation
	5.1 Benchmarking Methodology
	5.2 Benchmark Results
	5.3 Discussion

	6 Related Work
	6.1 Resource Finalization and Exception Handlers
	6.2 Effect Parametricity and Finalization
	6.3 Effect Handlers and Dynamic Finalization
	6.4 Dynamic Wind and Control Operators
	6.5 Effect Handlers and Static Control-Flow Linearity

	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Proof: Resource Safety
	A.2 Abstract Machine Typing
	A.3 Proof: Progress
	A.4 Proof: Preservation

