
Multi-stage Programming with
Generative and Analytical Macros

Nicolas Stucki

EPFL

Lausanne, Switzerland

nicolas.stucki@epfl.ch

Jonathan Immanuel

Brachthäuser

EPFL

Lausanne, Switzerland

jonathan.brachthauser@epfl.ch

Martin Odersky

EPFL

Lausanne, Switzerland

martin.odersky@epfl.ch

Abstract
In metaprogramming, code generation and code analysis are

complementary. Traditionally, principled metaprogramming

extensions for programming languages, like MetaML and

BER MetaOCaml, offer strong foundations for code genera-

tion but lack equivalent support for code analysis. Similarly,

existing macro systems are biased towards the code genera-

tion aspect.

In this work, we present a calculus for macros featuring

both code generation and code analysis. The calculus directly

models separate compilation of macros, internalizing a com-

monly neglected aspect of macros. The system ensures that

the generated code is well-typed and hygienic.

We implement our system in Scala 3, provide a formaliza-

tion, and prove its soundness.

CCSConcepts: • Software and its engineering→Macro
languages; Semantics; Patterns.

Keywords: multi-stage programming, metaprogramming,

macro systems, formalization

ACM Reference Format:
Nicolas Stucki, Jonathan Immanuel Brachthäuser, and Martin Oder-

sky. 2021. Multi-stage Programmingwith Generative and Analytical

Macros. In Proceedings of the 20th ACM SIGPLAN International Con-
ference on Generative Programming: Concepts and Experiences (GPCE
’21), October 17–18, 2021, Chicago, IL, USA. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3486609.3487203

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

GPCE ’21, October 17–18, 2021, Chicago, IL, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9112-2/21/10. . . $15.00

https://doi.org/10.1145/3486609.3487203

1 Introduction
Generative programming [5] is used in scenarios such as

code configuration of libraries, code optimizations [28], and

DSL implementations [4, 26]. There are various kinds of pro-

gram generation systems ranging from syntax-based and

unhygienic, to fully typed [14, 21]. Modern macro systems,

like Racket’s, can extend the syntax of the language [8] to

create hierarchies of domain-specific languages [1]. In this

paper, we are not concerned with Racket-like language ex-

tensibility, but rather macros that can generate/analize code

of expressions at compile-time.

Principled approaches to metaprogramming, such as

MetaML [25] and BER MetaOCaml [3, 11–13], offer strong

foundations for expression code generation. These systems

focus on runtime code generation and ensure static-safety

(well-typed and hygienic) and cross-stage safety. They usu-

ally provide cross-stage persistence (CSP), the ability to refer

to values from previous stages, at the cost of not supporting

cross-platform portability [25]. Cross-platform portability,

as defined by Taha and Sheard [25], describes the ability to

move code, generated on one machine, to a (potentially dif-

ferent) machine to compile and execute it there. This ability

is necessary for multi-stage macros in compiled languages

with separate compilation. To move code from one machine

to the next, cross-platform portability requires code serial-

ization, either in the form of source code or as a serialized

intermediate representation. Multi-stage systems that sup-

port portability usually need to make some compromises.

Some miss analytical capabilities while others allow both

generative and analytical macros by resorting to advanced

type system machinery.

MacroML [9] extended MetaML to provide a multi-stage

macro system showing that “multi-stage programming lan-
guages are a good foundation for the semantics based design
of macro systems” [9]. By design, MacroML took a conserva-

tive approach not to blur the distinction between code and

data, explicitly avoids dynamic scoping, and lacks analyti-

cal macros. Squid [16–18] provides a multi-stage system for

generative and analytical macros. Unlike MacroML, Squid

uses statically typed dynamic scoping, tracking free term

variables in types, to provide type-safe analytical macros.

110

https://doi.org/10.1145/3486609.3487203
https://doi.org/10.1145/3486609.3487203

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Nicolas Stucki, Jonathan Immanuel Brachthäuser, Martin Odersky

Requirements. We identify the following requirements

that a design of a multi-stage macro system for compiled

languages should meet.

• Cross-platform portability. It should be possible to use

generated code on different machines.

• Static-safety. Generated code should be hygienic and

well-typed.

• Cross-stage safety. Access to variables should only be

allowed at stages where they are available.

• Generative/Analytical. Programmers should be able to

generate as well as analyze and decompose code.

We present a formal calculus that captures the fundamen-

tal aspects of the Scala 3 multi-stage macro system. The

formalization and implementation advance the state of the

art, satisfying the requirements listed above.

Contributions. In particular, this paper makes the fol-

lowing contributions.

• We introduce a calculus (𝜆▲) for well-typed and hygienic
multi-stage metaprogramming that allows both genera-
tive and analytical macros (Section 3). The calculus sup-
ports quotes and splices (Section 3.1), cross-platform

portability (Section 3.2), and analytical macros via pat-

tern matching (Section 3.3).

• We prove soundness of 𝜆▲ in terms of the standard

theorems for progress (Theorems 3.5 and 3.14) and

preservation (Theorems 3.6 and 3.15).

• We fully implement 𝜆▲ as a production-ready system

in the Scala 3 programming language (Section 4).

2 Multi-Stage Macros in Scala 3
In this section, we offer an informal overview of the features

that our calculus provides and discuss how they relate to

the design requirements stated in the previous section. All

examples in this section are expressed in Scala 3, using our

implementation. In Section 3, we present 𝜆▲ formally.

2.1 Generative Multi-Stage Programming
Our implementation in Scala 3 supports generative multi-

stage programming. Here we give an overview of the various

features that together constitute the meta-programming API.

Quotes and Splices. Multi-stage programming in Scala

3 uses quotes '{..} to delay/stage execution of code and

splices ${..} to evaluate and insert code into quotes. Quoted

expressions are typed as Expr[T]with a covariant type param-

eter T. With these two concepts, it is easy to write statically

safe code generators. The following examples shows naive

implementation of the 𝑥𝑛 mathematical operation.

import scala.quoted.*
def powCode(x: Expr[Int], n: Int)(using Quotes): Expr[Int] =

if n == 0 then Expr(1) // lift 1 into '{ 1 }
else '{ $x * ${ powCode(x, n-1) } }

As shown in the example, our implementation provides the

Expr operation that lifts a value into a quoted expression.

Macros. We can use the same splicing abstraction to ex-

press macros. In our system, a macro consists of top-level

splices (not nested in any quote). Conceptually, the contents

of the splice are evaluated one stage earlier than the pro-

gram. Or, in other words, the contents are evaluated while

compiling the program. The generated code resulting from

the macro replaces the splice in the program.

def power2(x: Int): Int =
${ powCode('x, 2) } // x * x * 1

Stage consistency. We define the staging level of some

code as the number of quotes minus the number of splices

surrounding said code. In general, it is never possible to

access a local variable from a lower staging level as it does

not yet exist.

def badPower(x: Int, n: Int): Int =
${ powCode('x, n) } // ERROR value of `n` not known yet

In the context of macros and cross-platform portability, that
is, macros compiled on one machine but potentially executed

on another, we cannot support cross-stage persistence of

local variables.

def badPowCode(x: Expr[Int], n: Int)(using Quotes) =
// ERROR `n` potentially not available in the next machine
'{ power($x, n) }

def power(x: Int, n: Int): Int =
if n == 0 then 1
else power(x, n-1)

Therefore, in our system, local variables can only be accessed

at precisely the same staging level. For global definitions,

such as powCode, the rules are slightly different. It is possible to

generate code that contains a reference to a global definition
such as in '{ power(2, 4) }. This is a limited form of cross-

stage persistence, where we refer to the already compiled

code for power. Each compilation step will lower the staging

level by 1 while keeping global definitions. In consequence,

we can refer to compiled definitions inmacros such as powCode

in ${ powCode('x, 2) }. We disallow splices within top-level

splices.

Inlining. Since using the splices in the middle of a pro-

gram is not as ergonomic as calling a function, we hide the

staging mechanism from end-users of macros and have a

uniform way of calling macros and normal functions. For

this, we restrict the use of top-level splices to only appear in

so-called inline methods [22]. This mechanism is not part of

the formalization of the present paper but helps to see how

macros will be used in practice.

111

Multi-stage Programming with Generative and Analytical Macros GPCE ’21, October 17–18, 2021, Chicago, IL, USA

// inline macro definition
inline def inlinePower(x: Int, n: Int): Int =

${ powCodeFor('x, 'n) }
// `powCodeFor` defined in next section

// user code
def power2(x: Int): Int =

inlinePower(x, 2) // x * x * 1

The evaluation of the macro will only happen when the code

is inlined into power2. When inlined, the code is equivalent to

the previous definition of power2. An important consequence

is that none of the arguments or the return type of the macro

will have to mention the Expr types, encapsulating all aspects

of metaprogramming from the end users.

2.2 Analytical Multi-Stage Programming
By nature, macros consume and produce program fragments

of type Expr. Analytical macros inspect the code they receive

as arguments to perform some analysis or transformation.

Value analysis. To be able to generate optimized code

using powCode, the macro implementation powCodeFor needs to

first determine whether the argument passed as parameter n

is a constant value. This can be achieved via unlifting using

the Expr extractor from our library implementation that will

only match if n is a quoted constant and extracts its value.

def powCodeFor(x: Expr[Int], n: Expr[Int])(using Quotes) =
n match

// it is a constant: unlift code n='{m} into number m
case Expr(m) ⇒ powCode(x, m)
// not known: call power at runtime
case _ ⇒ '{ power($x, $n) }

Structural analysis. It is sometimes necessary to ana-

lyze the structure of the code or decompose the code into

its parts. A classic example is an embedded DSL, where a

macro knows a set of definitions that it can reinterpret while

compiling the code using a macro (for instance, to perform

optimizations). In the following example, we extend our pre-

vious implementation of powCode with the ability to look into

x to provide further optimizations.

def powCode(x: Expr[Int], n: Int)(using Quotes) =
x match

case '{ power($y, ${Expr(m)}) } ⇒ // we have (y^m)^n
powCode(y, n * m) // generate code for y^(n*m)

case _ ⇒
if n == 0 then '{ 1 }
else '{ $x * ${ powCode(x, n-1) } }

The pattern ${..} extracts code as an expression, and it is

either bound as $y or matched against a nested pattern as in

${Expr(m)}.

Patterns may contain two kinds of references, global refer-

ence such as power in '{ power(...) } or references to bindings

defined in the pattern such as x in case '{ (x: Int) ⇒ x }.

Closed patterns. When extracting an expression from a

quote, we need to make sure that we do not extrude any

variables from the scope where they are defined.

'{ (x: Int) ⇒ x + 1 } match
case '{ (y: Int) ⇒ $z } ⇒
// should not match, otherwise: z = '{ x + 1 }

In this example, we see that the pattern should not match.

Otherwise, any use of the expression z would contain an

unbound reference to x. To avoid any such extrusion, we

only match on a ${..} if its expression is closed under the

definitions within the pattern.

HOAS patterns. To allow extracting expression that may

have extruded references we offer a higher-order abstract syn-
tax (HOAS) [19] pattern $f(y) (or $f(y1, ...)). This pattern

will 𝜂-expand the sub-expression with respect to 𝑦 and bind

it to 𝑓 . The variables that might have been extruded will be

replaced by the arguments of the lambda.

'{ ((x: Int) ⇒ x + 1).apply(2) } match
case '{ ((y: Int) ⇒ $f(y)).apply($z: Int) } ⇒
// f may contain references to x
// f = (y: Expr[Int]) ⇒ '{ $y + 1 }
f(z) // generates '{ 2 + 1 }

This approach was also used in earlier Squid [17] versions.

The use of HOAS allows us to keep the involved types sim-

ple. The 𝜂-expanded sub-expression can be typed with a

simple function type. This way we can avoid scope extru-

sion without resorting to involved type-level machinery of

tracking free variables. HOAS patterns without parameters

are considered closed patterns.

Summary. We showed the features of our system that

support generative and analytical multi-stage programming.

We showed how cross-platform portability relates to macros

and how it influences the design of cross-stage safety. We

showed how we guarantee cross-stage safety with stage

consistency and HOAS patterns.

3 Multi-Stage Macros Calculus
In this section, we present the 𝜆▲ multi-stage macros calcu-
lus. The presentation is organized into four parts. We first

introduce the core calculus, which extends the simply-typed

lambda calculus with support for quotes and splices. The

two abstractions are at the core of cross-stage safety and

static-safety. In a second step, we extend the calculus to cap-

ture the semantics of compilation of macros. An abstraction

that supports cross-platform portability. Then we extend the

core calculus with quote analysis by adding quoted pattern

matching. In a final extension, we combine compilation and

112

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Nicolas Stucki, Jonathan Immanuel Brachthäuser, Martin Odersky

macros with the pattern matching extension. We show the

soundness of individual extensions and their combination.

3.1 Core Calculus: Quotes and Splices
This first core calculus captures the fundamental semantics

of programs that operate on and produce code. To this end,

it extends STLC with the ability to delay the computation

by quoting the code and the ability to compose delayed

computations by splicing.

Figure 1 defines the syntax and semantics of this calcu-

lus. We use the notation [𝑥 ↦→ 𝑡2]𝑡1 to denote the standard

capture-avoiding substitution of 𝑡2 for 𝑥 within 𝑡1. As usual,

we follow Barendregt [2] and require that all variable names

are globally unique. We also only distinguish terms up to

renaming.

3.1.1 Syntax. The calculus features the standard forms of

simply-typed lambda calculus, that is, constants 𝑐 , variables

𝑥 , abstraction 𝜆𝑥 :𝑇 .𝑡 , and application 𝑡 𝑡 . In order to express

the introductory examples, we also add support for fixpoint

computation fix 𝑡 . The two most important additions to the

term syntax are quotation ⌈𝑡⌉ (instead of '{t}) and splicing

⌊𝑡⌋ (instead of ${t}). The syntax of types includes built-in

types 𝐶 , function types of the form 𝑇→𝑇 , and the type of

quoted terms ⌈𝑇 ⌉ (corresponds to Expr[T]). That is, for a term

𝑡 of type 𝑇 , the quoted term ⌈𝑡⌉ has type ⌈𝑇 ⌉.
Example 3.1. Within the core calculus, we can easily write

a function that can generate complex code. The def powCode

of Section 2 can be encoded in this calculus for a numerical

type N as follows:

fix 𝜆rec:⌈N⌉→N→⌈N⌉ .
𝜆𝑥 :⌈N⌉ .𝜆𝑛:N.ifIsZero 𝑛 ⌈1⌉ ⌈mult ⌊𝑥⌋ ⌊rec 𝑥 (𝑛−1)⌋⌉

3.1.2 Environments. As usual, environments Γ are lists

of bindings 𝑥 :
𝑖 𝑇 . However, they do not only track the type

of each binding 𝑇 , but also at which staging level 𝑖 a vari-
able has been introduced. The staging level 𝑖 is a number in

N0 = {0, 1, 2, . . . }. We consider bindings at different levels

as disjoint. That is, looking up the binding for 𝑥 at level 𝑗

in environment Γ = Γ1, 𝑥 :
𝑖 𝑇, Γ2 only succeeds, if 𝑖 = 𝑗 . For

simplicity, we require well-formedness to establish that en-

vironments contain a single binding of each name 𝑥 , ruling

out Γ, 𝑥 :
𝑖 𝑇, 𝑥 :

𝑗 𝑇 by construction. By definition, the envi-

ronment guarantees cross-stage safety. Notably, this implies

that there is no cross-stage persistence of local variables.

Example 3.2. Though the calculus itself does not support

CSP, it is possible to use values in later stages by lifting

and splicing. In the following example, we lift a boolean (B)
constant into a quote containing the constant.

𝜆𝑥 :B.ifIsTrue 𝑥 ⌈true⌉ ⌈false⌉

3.1.3 Typing. Typing judgments take the form Γ ⊢𝑖 𝑡 :

𝑇 and assign a term 𝑡 the type 𝑇 . However, they are also

parameterized by the staging level 𝑖 . Conceptually, the level

starts at 0, increases each time we encounter a quote (T-

Quote), and decreases each time we encounter a splice (T-

Splice). All other typing rules maintain the same level in

their premises. Splices cannot be typed at level 0 to avoid

negative staging levels. As can be seen in ruleT-Abs, bindings

are added to the environment with the level at which they

are defined. Similarly, a variable can only be typed if it is

referenced at the same level it was defined in (T-Var).

Example 3.3. Tracking of levels ensures cross-stage safety
of variables. Both type derivations below fail.

𝑥 :
1 𝑇 ∈ ∅, 𝑥 :

0 𝑇
Fail

∅, 𝑥 :
0 𝑇 ⊢1 𝑥 : 𝑇

∅, 𝑥 :
0 𝑇 ⊢0 ⌈𝑥⌉ : ⌈𝑇 ⌉

∅ ⊢0 𝜆𝑥 :𝑇 .⌈𝑥⌉ : 𝑇→⌈𝑇 ⌉

𝑥 :
0 ⌈𝑇 ⌉ ∈ ∅, 𝑥 :

1 ⌈𝑇 ⌉
Fail

∅, 𝑥 :
1 ⌈𝑇 ⌉ ⊢0 𝑥 : ⌈𝑇 ⌉

∅, 𝑥 :
1 ⌈𝑇 ⌉ ⊢1 ⌊𝑥⌋ : 𝑇

∅ ⊢1 𝜆𝑥 :⌈𝑇 ⌉ .⌊𝑥⌋ : ⌈𝑇 ⌉→𝑇

3.1.4 Evaluation. We present the semantics of our calcu-

lus in terms of a small-step operational semantics (Figure 1).

Like the typing judgments, the evaluation relation is also

indexed by a staging level 𝑖 . Also similar to typing, the index

starts at 0, increases each time it goes in a quote (E-Quote),

and decreases each time it goes into a splice (E-Splice). At

level 0, the semantics follow the usual STLC semantics and

we perform 𝛽-reduction (E-Beta) and fix-point computation

(E-Fix-Red). The rules E-App-1, E-App-2, and E-Fix express

the usual congruences. The congruences E-Quote and E-

Splicemodify the levels accordingly. Intuitively, the calculus

not only performs 𝛽-reduction on level 0, but also seeks to

reduce all splices at level 1 (E-Splice-Red). To achieve this,

at levels greater than 0, we need to evaluate under lambdas

(E-Abs) in case it contains a level 1 splice.

Example 3.4. The specifics of the operational semantics

are illustrated by the following example, which makes use of

both reductions rules E-Beta and E-Splice-Red. The result-

ing expression is a value according to our definition since it

does not contain any level-1 splice.

⌈𝜆𝑥 :𝑇 .⌊(𝜆𝑦:⌈𝑇 ⌉ .𝑦) ⌈𝑓 𝑥⌉⌋⌉

−→ ⌈𝜆𝑥 :𝑇 .⌊⌈𝑓 𝑥⌉⌋⌉ E-Beta

−→ ⌈𝜆𝑥 :𝑇 .𝑓 𝑥⌉ E-Splice-Red

3.1.5 Values. While it may appear non-standard, the defi-

nition of values follows directly from the operational seman-

tics. Intuitively, a term is a value, if it is a constant (V-Const),

an abstraction (V-Abs-0), or a quote (V-Quote) that does not

contain any level-1 splices.

3.1.6 Soundness. We show the soundness of the calculus

by proving the standard progress and preservation theorems.

Theorem 3.5 (Progress for Terms). If ∅ ⊢𝑖 𝑡 : 𝑇 , then 𝑡 is a
value ⊢𝑖 𝑡 vl or there exists 𝑡 ′ such 𝑡 −→𝑖 𝑡 ′.

Theorem 3.6 (Preservation for Terms). If Γ ⊢𝑖 𝑡 : 𝑇 and
𝑡 −→𝑖 𝑡 ′, then Γ ⊢𝑖 𝑡 ′ : 𝑇 .

113

Multi-stage Programming with Generative and Analytical Macros GPCE ’21, October 17–18, 2021, Chicago, IL, USA

Syntax

Term 𝑡 F 𝑐 | 𝑥 | 𝜆𝑥 :𝑇 .𝑡 | 𝑡 𝑡 | fix 𝑡 | ⌈𝑡⌉ | ⌊𝑡⌋
Type 𝑇 F 𝐶 | 𝑇→𝑇 | ⌈𝑇 ⌉

Environment
Typing environment Γ F ∅ | Γ, 𝑥 :

𝑖 𝑇

Level 𝑖 ∈ N0

Typing Rules

Γ ⊢𝑖 𝑐 : 𝐶
(T-Const)

𝑥 :
𝑖 𝑇 ∈ Γ

Γ ⊢𝑖 𝑥 : 𝑇

(T-Var)

Γ, 𝑥 :
𝑖 𝑇1 ⊢𝑖 𝑡2 : 𝑇2

Γ ⊢𝑖 𝜆𝑥 :𝑇1 .𝑡2 : 𝑇1→𝑇2
(T-Abs)

Γ ⊢𝑖 𝑡1 : 𝑇1→𝑇2 Γ ⊢𝑖 𝑡2 : 𝑇1
Γ ⊢𝑖 𝑡1 𝑡2 : 𝑇2

(T-App)

Γ ⊢𝑖 𝑡 : 𝑇→𝑇

Γ ⊢𝑖 fix 𝑡 : 𝑇
(T-Fix)

Γ ⊢𝑖+1 𝑡 : 𝑇
Γ ⊢𝑖 ⌈𝑡⌉ : ⌈𝑇 ⌉
(T-Quote)

Γ ⊢𝑖−1 𝑡 : ⌈𝑇 ⌉ 𝑖 ≥ 1

Γ ⊢𝑖 ⌊𝑡⌋ : 𝑇
(T-Splice)

Operational Semantics

𝑡1 −→𝑖 𝑡 ′
1

𝑡1 𝑡2 −→𝑖 𝑡 ′
1
𝑡2

(E-App-1)

𝑡 −→𝑖 𝑡 ′ 𝑖 ≥ 1

𝜆𝑥 :𝑇 .𝑡 −→𝑖 𝜆𝑥 :𝑇 .𝑡 ′

(E-Abs)

⊢0 𝑡2 vl

(𝜆𝑥 :𝑇1 .𝑡1) 𝑡2 −→0 [𝑥 ↦→ 𝑡2]𝑡1
(E-Beta)

⊢𝑖 𝑡1 vl 𝑡2 −→𝑖 𝑡 ′
2

𝑡1 𝑡2 −→𝑖 𝑡1 𝑡
′
2

(E-App-2)

𝑡 −→𝑖 𝑡 ′

fix 𝑡 −→𝑖 fix 𝑡 ′

(E-Fix)

fix 𝜆𝑥 :𝑇 .𝑡 −→0 [𝑥 ↦→ fix 𝜆𝑥 :𝑇 .𝑡]𝑡
(E-Fix-Red)

𝑡 −→𝑖+1 𝑡 ′

⌈𝑡⌉ −→𝑖 ⌈𝑡 ′⌉
(E-Quote)

𝑡 −→𝑖−1 𝑡 ′ 𝑖 ≥ 1

⌊𝑡⌋ −→𝑖 ⌊𝑡 ′⌋
(E-Splice)

⊢1 𝑡 vl

⌊⌈𝑡⌉⌋ −→1 𝑡

(E-Splice-Red)

Values

⊢𝑖 𝑐 vl
(V-Const)

⊢0 𝜆𝑥 :𝑇 .𝑡 vl
(V-Abs-0)

⊢𝑖+1 𝑡 vl

⊢𝑖 ⌈𝑡⌉ vl
(V-Quote)

𝑖 ≥ 1

⊢𝑖 𝑥 vl
(V-Var)

⊢𝑖 𝑡 vl 𝑖 ≥ 1

⊢𝑖 fix 𝑡 vl
(V-Fix)

⊢𝑖 𝑡 vl 𝑖 ≥ 1

⊢𝑖 𝜆𝑥 :𝑇 .𝑡 vl
(V-Abs)

⊢𝑖 𝑡1 vl ⊢𝑖 𝑡2 vl 𝑖 ≥ 1

⊢𝑖 𝑡1 𝑡2 vl
(V-App)

⊢𝑖−1 𝑡 vl 𝑖 ≥ 2

⊢𝑖 ⌊𝑡⌋ vl
(V-Splice)

Figure 1. Core Calculus

The full proofs can be found in Appendix A [24], here we

only point out the structure and define key lemmas.

As usual, progress requires us to show that values take

canonical forms. This standard lemma trivially extends to

our non-standard definition of values.

Lemma 3.7 (Canonical Forms).
If ⊢0 𝑡 vl and
• 𝑡 : 𝐶 , then 𝑡 = 𝑐 for some 𝑐 .
• 𝑡 : 𝑇1→𝑇2, then 𝑡 = 𝜆𝑥 :𝑇1.𝑡1 for some 𝑥 and 𝑡1.
• 𝑡 : ⌈𝑇 ⌉, then 𝑡 = ⌈𝑡1⌉ for some 𝑡1.

Proof (of Lemma 3.7). By case analysis on the value defini-

tion ⊢0 𝑡 vl. □

To prove progress, we also need to prove a more general vari-

ant allowing the typing context Γ to only contain bindings

on a level greater than 0. To capture this property, we define

Γ≥1
as a restricted typing context:

Definition 3.8 (Restricted Typing Context).

Γ≥1 F ∅ | Γ≥1, 𝑥 :
𝑖 𝑇 for 𝑖 ≥ 1

Using the restricted context, we define the generalized ver-

sion of progress as:

Lemma 3.9 (Extended Progress for Terms). If Γ≥1 ⊢𝑖 𝑡 : 𝑇 ,
then 𝑡 is a value ⊢𝑖 𝑡 vl or there exists 𝑡 ′ such 𝑡 −→𝑖 𝑡 ′

Proof (of Theorem 3.5). The proof of progress trivially fol-

lows from Lemma 3.9, by choosing Γ≥1 = ∅. □

For the proof of preservation, we need to adjust the stan-

dard substitution lemma to our setting with levels.

Lemma 3.10 (Substitution). ∀𝑖, 𝑗 ∈ N0, if Γ ⊢𝑗 𝑡1 : 𝑇1 and
Γ, 𝑥 :

𝑗 𝑇1 ⊢𝑖 𝑡2 : 𝑇2 then Γ ⊢𝑖 [𝑥 ↦→ 𝑡1]𝑡2 : 𝑇2.

Proof of Preservation (Theorem 3.6). Induction over the typ-

ing derivation, using the substitution lemma (Lemma 3.10).

□

3.2 Macros Extension: Cross-Platform Portability
The calculus from the previous section allowed us to write

programs that generate code using quotes and splices.

114

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Nicolas Stucki, Jonathan Immanuel Brachthäuser, Martin Odersky

Extended Syntax

Program 𝑝 F def 𝑥 = ⌈𝑡⌉ in 𝑝 | eval 𝑡

Libraries

Library typing Σ F ∅ | Σ, 𝑥 :𝑇

Runtime library Ω F ∅ | Ω, 𝑥=𝑡

Extended Typing Rules

𝑥 :𝑇 ∈ Σ

Γ | Σ ⊢𝑖 𝑥 : 𝑇

(T-Link)

∅ | Σ ⊢0 𝑡 : 𝑇
Σ ⊢ eval 𝑡 : 𝑇

(T-Eval)

∅ | Σ ⊢1 𝑡 : 𝑇1 Σ, 𝑥 :𝑇1 ⊢ 𝑝 : 𝑇2

Σ ⊢ def 𝑥 = ⌈𝑡⌉ in 𝑝 : 𝑇2
(T-Def)

Extended Values
⊢0 𝑡 vl

⊢ eval 𝑡 vl
(V-Eval)

Extended Operational Semantics

𝑥=𝑡 ∈ Ω

𝑥 −→0

Ω 𝑡

(E-Link)

𝑡 −→0

Ω 𝑡 ′

eval 𝑡 | Ω −→ eval 𝑡 ′ | Ω
(E-Eval)

𝑡 −→1

Ω 𝑡 ′

def 𝑥 = ⌈𝑡⌉ in 𝑝 | Ω −→ def 𝑥 = ⌈𝑡 ′⌉ in 𝑝 | Ω
(E-Macro)

⊢1 𝑡 vl

def 𝑥 = ⌈𝑡⌉ in 𝑝 | Ω −→ 𝑝 | Ω, 𝑥=𝑡
(E-Compile)

Figure 2. Macros Extension

In realistic compiled languages, code is first compiled on

some machine and then used on a (potentially) different ma-

chine. If a macro is executed when compiling, the code it

generates will also be compiled and then used on another ma-

chine. This implies that we need cross-platform portability

to compile the generated code. If a macro definition is itself

compiled, we need to compile a program containing quoted

code. This requires a form of serialization in practice, but for

this to be sound it also requires cross-platform portability.

To capture the semantics of compiling programs, we ex-

tend the previous calculus with library function definitions.

These definitions will be compiled before they are used. The

calculus also adds a restricted notion of CSP that is com-

patible with cross-platform portability. Figure 2 defines the

syntax and semantics of the extended 𝜆▲ calculus.

3.2.1 Syntax. The macro calculus extends the syntax of

Figure 1 adding a syntactic form for programs 𝑝 . Programs

are lists of library bindings def 𝑥 = ⌈𝑡⌉ in 𝑝 ending in a

single term eval 𝑡 that will be evaluated after all library bind-
ings have been compiled. Here, def 𝑥 = ⌈𝑡⌉ in 𝑝 represents

the definition of a library function that is made available as

𝑥 in the remaining program. The implementation 𝑡 , which

is given as code, is compiled and then added to a simplified

store, which we use to model the set of compiled functions

loaded in the program. In this program, a macro is a splice

within 𝑡 . The syntactic form eval 𝑡 represents a program

that will be evaluated without being compiled. In practice,

eval 𝑡 would be an interpreted call to the main method.

3.2.2 Libraries. Figure 2 introduces store-like runtime li-

braries Ω that map library function names 𝑥 to their imple-

mentation. It also adds a new typing environment Σ, which
types libraries Ω and allows us to track references to com-

piled programs. Values will only ever be added to the library

Ω but never updated. Importantly, the bindings in Σ (and Ω)
are not annotated with staging levels and are thus staging-

level agnostic.

3.2.3 Typing. The typing judgements in Figure 2 extend

the ones presented in Figure 1. We modify the judgement

form Γ ⊢𝑖 𝑡 : 𝑇 to also track the library typing Σ as Γ | Σ ⊢𝑖
𝑡 : 𝑇 . All existing rules simply pass Σ unmodified to their

premises. To type programs, we add a new typing judgment

Σ ⊢ 𝑝 : 𝑇 where Σ tracks the library bindings. When typing a

library definition def 𝑥 = ⌈𝑡⌉ in 𝑝 (T-Def), we type the term

𝑡 at level 1. This way the term 𝑡 can contain splices, which in

turn allows us to model macros. The rest of the program is

typed adding 𝑥 to the library environment Σ. Typing eval 𝑡
(T-Eval) simply types 𝑡 at level 0 (like in Section 3.1) but

adds the Σ, which will not change in the remainder of the

derivation. To be able to access library functions, we add rule

T-Link, which looks up the signature of a free variable 𝑥 in Σ.
We assume that dom(Σ) and dom(Γ) are disjoint and hence

there cannot be any ambiguitywith (T-Var). Note that, unlike

rule T-Var, variables in Σ are stage polymorphic, therefore

library functions display a form of cross-stage persistence.

Example 3.11. Library functions in Σ can be used at any

level after they are compiled. This is illustrated by the typing

derivation below, where 𝑓 is used at staging levels 0 and 1.

Assuming that 𝑓 :⌈𝐶⌉→𝐶 ∈ Σ, we can see that all premises

are satisfiable with 𝑇1 = 𝑇3 = ⌈𝐶⌉ and 𝑇2 = 𝐶 .

𝑓 :𝑇1→𝐶 ∈ Σ

∅ | Σ ⊢0 𝑓 : 𝑇1→𝐶

𝑓 :𝑇3→𝑇2 ∈ Σ

∅ | Σ ⊢1 𝑓 :𝑇3→𝑇2

∅ | Σ ⊢0 𝑐 : 𝐶
𝑇3 = ⌈𝐶⌉

∅ | Σ ⊢1 ⌈𝑐⌉ : 𝑇3
∅ | Σ ⊢1 𝑓 ⌈𝑐⌉ : 𝑇2

𝑇1 = ⌈𝑇2⌉
∅ | Σ ⊢0 ⌈𝑓 ⌈𝑐⌉⌉ : 𝑇1

∅ | Σ ⊢0 𝑓 ⌈𝑓 ⌈𝑐⌉⌉ : 𝐶
Σ ⊢ eval 𝑓 ⌈𝑓 ⌈𝑐⌉⌉ : 𝐶

3.2.4 Evaluation. Like in the case of typing, the opera-

tional semantics in Figure 2 extends the one presented in

Figure 1 by modifying the relation 𝑡 −→𝑖 𝑡 ′ to be indexed

with a runtime library Ω as 𝑡 −→𝑖
Ω 𝑡 ′. Also, like in typing, all

existing rules simply pass on Ω to their premises. To specify

115

Multi-stage Programming with Generative and Analytical Macros GPCE ’21, October 17–18, 2021, Chicago, IL, USA

the evaluation of programs, we introduce a new relation

𝑝 | Ω −→ 𝑝 ′ | Ω′
, where a program 𝑝 with a library Ω evalu-

ates to a program 𝑝 ′
with a potentially extended library Ω′

.

For a library definition def 𝑥 = ⌈𝑡⌉ in 𝑝 , where 𝑡 is a value

(i.e., does not contain macros), the library store is updated

with a binding𝑥=𝑡 and the definition is removed (E-Compile).

Importantly, in this process we are taking a 𝑡 at staging level-

1 and compile it, making it available as a runtime dependency

in the rest of the program; the compiled library function 𝑡 can

be used on arbitrary levels, including level 0. If the library

function 𝑡 in a definition def 𝑥 = ⌈𝑡⌉ in 𝑝 still contains

splices at staging level 1 (macros), we first need to evaluate

them (E-Macro). Using the reduction of the core calculus

from Section 3.1, the contents of the macros will be evaluated

at that point. This will produce a quote value that is then can-

celed with the splice. To evaluate the final expression eval 𝑡 ,
we simply reduce the term 𝑡 using the runtime dependencies

in Ω (E-Eval). At this point, Ω is fixed and will not change,

and it will just propagate down to allow E-Link to use Ω. A
reference 𝑥 to a library function typed with T-Link at level

0 will lead to 𝑥 being replaced by the compiled code from

Ω (E-Macro). We say that we “link the reference with the

compiled function”. At any other level 𝑖 ≥ 1, we simply keep

the reference to 𝑥 , since it is considered a value.

3.2.5 Values. The definition of values in Figure 2 is kept

unchanged. We merely also add a value definition for pro-

grams ⊢ 𝑝 vl . The only program value is eval 𝑡 where 𝑡 is
required to be a value (V-Eval).

Example 3.12. The following example illustrates evalua-

tion in the calculus. We define a library function 𝑝𝑜𝑤𝐶𝑜𝑑𝑒

(implemented as in Example 3.1) as a macro taking a quoted

base 𝑥 and an exponent 𝑛 of numeric type (N); and a library

function power2 using the macro with 2 as the exponent.

Ω ∅

def powCode = ⌈fix 𝜆rec:⌈N⌉→N→⌈N⌉⌉ in
def power2 = ⌈𝜆𝑥 :N.⌊powCode ⌈𝑥⌉ 2⌋⌉ in eval power2 3

First, we compile the macro definition powCode since it does
not contain any splices at level 1, storing it in Ω.

Ω ∅, powCode=fix 𝜆rec: ⌈N⌉→N→⌈N⌉

def power2 = ⌈𝜆𝑥 :N.⌊powCode ⌈𝑥⌉ 2⌋⌉ in eval power2 3

Next, we perform macro expansion and evaluate the code in

the splice of power2.
Ω ∅, powCode=fix 𝜆rec: ⌈N⌉→N→⌈N⌉

def power2 = ⌈𝜆𝑥 :N.⌊⌈𝑥 ∗ 𝑥 ∗ 1⌉⌋⌉ in eval power2 3

Performing splice canceling results in:

Ω ∅, powCode=fix 𝜆rec: ⌈N⌉→N→⌈N⌉

def power2 = ⌈𝜆𝑥 :N.𝑥 ∗ 𝑥 ∗ 1⌉ in eval power2 3

As before, we compile power2, which now does not contain

splices at level 0.

Ω ∅, powCode=..., power2=𝜆𝑥 :N.𝑥∗𝑥∗1

eval power2 3

Finally, we evaluate the main program:

Ω ∅, powCode=..., power2=...

eval 9

3.2.6 Soundness. To state the progress and preservation

theorems for the 𝜆▲ calculus, we introduce an auxiliary rela-

tion Σ ⊩ Ω, which means that Ω is well-typed under envi-

ronment Σ.

Definition 3.13. (Library Typing) Σ ⊩ Ω if and only if

dom(Σ) = dom(Ω) ∧
∅ | Σ ⊢𝑖 Ω(𝑥) : Σ(𝑥) for all 𝑥 ∈ dom(Ω) and all 𝑖 ∈ N0

Using this definition, we state the soundness of the calculus

in terms of progress and preservation for programs. Again,

the full proofs can be found in Appendix B [24].

Theorem 3.14 (Progress for Programs). If Σ ⊢ 𝑝 : 𝑇 , then
𝑝 is a value ⊢ 𝑝 vl or, for any Ω such that Σ ⊩ Ω, there exists
𝑝 ′ and Ω′ such 𝑝 | Ω −→ 𝑝 ′ | Ω′.

Theorem 3.15 (Preservation for Programs). If Σ ⊢ 𝑝 : 𝑇 ,
Σ ⊩ Ω and 𝑝 | Ω −→ 𝑝 ′ | Ω′, then for some Σ′ ⊇ Σ, Σ′ ⊢ 𝑝 ′

: 𝑇

and Σ′ ⊩ Ω′.

Since we added rule T-Link, we need to revisit the lemmas

from the previous section. The Canonical Forms (Lemma 3.7)

still holds because there was no change in value definitions.

We also need to restate the various theorems and lemmas

for terms to account for libraries and library typing.

Theorem 3.16 (Progress for Terms). If ∅ | Σ ⊢𝑖 𝑡 : 𝑇 and
Σ ⊩ Ω, then 𝑡 is a value ⊢𝑖 𝑡 vl or there exists 𝑡 ′ such 𝑡 −→𝑖

Ω 𝑡 ′.

Lemma 3.17 (Extended Progress for Terms). If Γ≥1 | Σ ⊢𝑖
𝑡 : 𝑇 and Σ ⊩ Ω, then 𝑡 is a value ⊢𝑖 𝑡 vl or there exists 𝑡 ′ such
𝑡 −→𝑖

Ω 𝑡 ′.

Theorem 3.18 (Preservation for Terms). If Γ | Σ ⊢𝑖 𝑡 : 𝑇 ,
𝑡 −→𝑖

Ω 𝑡 ′ and Σ ⊩ Ω, then Γ | Σ ⊢𝑖 𝑡 ′ : 𝑇 .
Lemma 3.19 (Substitution). ∀𝑖, 𝑗 ∈ N0, if Γ | Σ ⊢𝑗 𝑡1 : 𝑇1
and Γ, 𝑥 :

𝑗 𝑇1 | Σ ⊢𝑖 𝑡2 : 𝑇2 then Γ | Σ ⊢𝑖 [𝑥 ↦→ 𝑡1]𝑡2 : 𝑇2.
Most of the proofs carry through unchanged. To show

preservation we additionally need the following lemma.

Lemma 3.20 (Σ-Weakening). If Σ ⊢ 𝑝 : 𝑇 and Σ′ ⊇ Σ, then
Σ′ ⊢ 𝑝 : 𝑇

3.3 Analytical Extension: Quote Matching
We now extend the calculus of Section 3.1 with support for

analytical macros. To this end, we add a pattern matching

construct that can deconstruct a piece of code into its compo-

nents. Subexpressions of the code can be selectively extracted

using a bind pattern. Importantly, patterns can only match

on a subset of the language, specifically STLC+Fix. Figure 3

contains the syntax and semantics of this calculus.

116

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Nicolas Stucki, Jonathan Immanuel Brachthäuser, Martin Odersky

Extended Syntax Extended Environment

Terms 𝑡 F . . . | 𝑡 match ⌈𝑡⌉ then 𝑡 else 𝑡 | T𝑥U𝑥𝑘 :𝑇𝐾
𝑇

Pattern bindings Φ F ∅ | Φ, 𝑥 ↦→ 𝑥

Extended Typing Rules

Γ ⊢𝑖 𝑡𝑠 : ⌈𝑇𝑝 ⌉ ∅ ⊢𝑖+1 𝑡𝑝 : 𝑇𝑝 ⊣ Γ𝑡 Γ; Γ𝑡 ⊢𝑖 𝑡𝑡 : 𝑇 Γ ⊢𝑖 𝑡𝑒 : 𝑇
Γ ⊢𝑖 𝑡𝑠 match ⌈𝑡𝑝 ⌉ then 𝑡𝑡 else 𝑡𝑒 : 𝑇

(T-Match)

Γ𝑝 ⊢𝑖 𝑐 : 𝐶 ⊣ ∅
(T-Pat-Const)

𝑥 :
𝑖 𝑇 ∈ Γ𝑝

Γ𝑝 ⊢𝑖 𝑥 : 𝑇 ⊣ ∅
(T-Pat-Var)

Γ𝑝 , 𝑥 :
𝑖 𝑇1 ⊢𝑖 𝑡 : 𝑇2 ⊣ Γ𝑡

Γ𝑝 ⊢𝑖 𝜆𝑥 :𝑇1 .𝑡 : 𝑇1→𝑇2 ⊣ Γ𝑡
(T-Pat-Abs)

Γ𝑝 ⊢𝑖 𝑡1 : 𝑇1→𝑇2 ⊣ Γ𝑡1 Γ𝑝 ⊢𝑖 𝑡2 : 𝑇1 ⊣ Γ𝑡2

Γ𝑝 ⊢𝑖 𝑡1 𝑡2 : 𝑇2 ⊣ Γ𝑡1 ; Γ𝑡2
(T-Pat-App)

Γ𝑝 ⊢𝑖 𝑡 : 𝑇→𝑇 ⊣ Γ𝑡

Γ𝑝 ⊢𝑖 fix 𝑡 : 𝑇 ⊣ Γ𝑡
(T-Pat-Fix)

𝑥𝑘 :
𝑖 𝑇𝑘 ∈ Γ𝑝

Γ𝑝 ⊢𝑖 T𝑥U𝑥𝑘 :𝑇𝐾
𝑇

: 𝑇 ⊣ ∅, 𝑥 :
𝑖−1 ⌈𝑇𝑘 ⌉→⌈𝑇 ⌉

(T-Pat-Bind)

Extended Operational Semantics

⊢1 𝑡𝑠 vl 𝑡𝑠 � 𝑡𝑝 / 𝑡𝑡 =⇒∅ 𝑡 ′𝑡
⌈𝑡𝑠 ⌉ match ⌈𝑡𝑝 ⌉ then 𝑡𝑡 else 𝑡𝑒 −→0 𝑡 ′𝑡

(E-Match-Succ)

𝑡𝑠 −→0 𝑡 ′𝑠
𝑡𝑠 match ⌈𝑡𝑝 ⌉ then 𝑡𝑡 else 𝑡𝑒 −→0 𝑡 ′𝑠 match ⌈𝑡𝑝 ⌉ then 𝑡𝑡 else 𝑡𝑒

(E-Match-Scrut)

⊢1 𝑡𝑠 vl 𝑡𝑠 � 𝑡𝑝 / 𝑡𝑡 ≠⇒ ∅ 𝑡 ′𝑡
⌈𝑡𝑠 ⌉ match ⌈𝑡𝑝 ⌉ then 𝑡𝑡 else 𝑡𝑒 −→0 𝑡𝑒

(E-Match-Fail)

⊢0 𝑡𝑠 vl 𝑡𝑡 −→𝑖 𝑡 ′𝑡 𝑖 ≥ 1

𝑡𝑠 match ⌈𝑡𝑝 ⌉ then 𝑡𝑡 else 𝑡𝑒 −→𝑖 𝑡𝑠 match ⌈𝑡𝑝 ⌉ then 𝑡 ′𝑡 else 𝑡𝑒
(E-Match-Then)

⊢0 𝑡𝑠 vl ⊢0 𝑡𝑡 vl 𝑡𝑒 −→𝑖 𝑡 ′𝑒 𝑖 ≥ 1

𝑡𝑠 match ⌈𝑡𝑝 ⌉ then 𝑡𝑡 else 𝑡𝑒 −→𝑖 𝑡𝑠 match ⌈𝑡𝑝 ⌉ then 𝑡𝑡 else 𝑡 ′𝑒
(E-Match-Else)

𝑐 � 𝑐 / 𝑡𝑡 =⇒Φ 𝑡𝑡
(E-Pat-Const)

𝑡𝑠1 � 𝑡𝑝1 / 𝑡𝑡1 =⇒Φ 𝑡𝑡2 𝑡𝑠2 � 𝑡𝑝2 / 𝑡𝑡2 =⇒Φ 𝑡𝑡3

𝑡𝑠1 𝑡𝑠2 � 𝑡𝑝1 𝑡𝑝2 / 𝑡𝑡1 =⇒Φ 𝑡𝑡3
(E-Pat-App)

𝑡𝑠 � 𝑡𝑝 / 𝑡𝑡 =⇒Φ 𝑡 ′𝑡
fix 𝑡𝑠 � fix 𝑡𝑝 / 𝑡𝑡 =⇒Φ 𝑡 ′𝑡

(E-Pat-Fix)

Φ(𝑥𝑝) � 𝑥𝑝 / 𝑡𝑡 =⇒Φ 𝑡𝑡
(E-Pat-Var)

𝑡𝑠 � 𝑡𝑝 / 𝑡𝑡 =⇒Φ,𝑥𝑝 ↦→𝑥𝑠 𝑡 ′𝑡
𝜆𝑥𝑠 :𝑇 .𝑡𝑠 � 𝜆𝑥𝑝 :𝑇 .𝑡𝑝 / 𝑡𝑡 =⇒Φ 𝑡 ′𝑡

(E-Pat-Abs)

𝐹𝑉 (𝑡𝑠) ∩ range(Φ) ⊆ {Φ(𝑥𝑘)} 𝑡 ′𝑠 = 𝜆𝑥 ′
𝑘
:⌈𝑇𝑘 ⌉ . [Φ(𝑥𝑘) ↦→ ⌊𝑥 ′

𝑘
⌋] ⌈𝑡𝑠 ⌉

𝑡𝑠 � T𝑥U𝑥𝑘 :𝑇𝐾
𝑇

/ 𝑡𝑡 =⇒Φ [𝑥 ↦→ 𝑡 ′𝑠]𝑡𝑡
(E-Pat-Bind)

Extended Values
⊢𝑖 𝑡𝑠 vl ⊢𝑖 𝑡𝑡 vl ⊢𝑖 𝑡𝑒 vl 𝑖 ≥ 1

⊢𝑖 𝑡𝑠 match ⌈𝑡𝑝 ⌉ then 𝑡𝑡 else 𝑡𝑒 vl
(V-Match)

Figure 3. Quote Pattern Match Extension

3.3.1 Syntax. The syntax of our extension is defined in

Figure 3. It extends the calculus presented in Figure 1 with

two new syntactic constructs: a pattern matching operation

𝑡𝑠 match ⌈𝑡𝑝⌉ then 𝑡𝑡 else 𝑡𝑒 , and a bind pattern T𝑥U𝑥𝑘 :𝑇𝐾
𝑇

.

The former matches a scrutinee 𝑡𝑠 against a pattern 𝑡𝑝 . If the

match succeeds the then branch 𝑡𝑡 is evaluated, otherwise

the else branch 𝑡𝑒 is evaluated. A pattern 𝑡𝑝 may contain any

of the following language constructs: constants, references,

lambdas, application, and fix operator. In addition, 𝑡𝑝 may

contain a bind pattern T𝑥U𝑥𝑘 :𝑇𝐾
𝑇

, which will extract a sub-

expression of type 𝑇 from the quote and bind it to 𝑥 . The

extracted sub-expression is locally closed under 𝑥𝑘 :𝑇𝐾 , that

is, it can only contain any of the 𝑥𝑘 as free variables. We say

the sub-expression is locally closed, since in addition to free

117

Multi-stage Programming with Generative and Analytical Macros GPCE ’21, October 17–18, 2021, Chicago, IL, USA

variables 𝑥𝑘 :𝑇𝐾 bound in the pattern, it can contain free vari-

ables defined outside of the pattern. Bind is commonly used

without any 𝑥𝑘 :𝑇𝐾 as T𝑥U
𝑇
to match a closed subexpression.

3.3.2 Typing. Typing a pattern match (T-Match) requires

that the scrutinee of type ⌈𝑇𝑝⌉ will be matched against a

pattern of type 𝑇𝑝 . Patterns themselves are typed under a

different typing judgment Γ𝑝 ⊢𝑖 𝑡 : 𝑇 ⊣ Γ𝑡 . Here Γ𝑝 represents
an input and contains the bindings definedwithin the pattern.

In contrast, Γ𝑡 represents an output and contains binding

introduced by the pattern, which is then made available in

the then branch. The pattern is typed at level 𝑖 + 1 as if it was
in a quote (as reflected by the syntax).

The rules for pattern typing mostly coincide with their

typing counterparts. They only differ in their treatment of

environments. First, the Γ𝑝 environment tracks any binding

added by a lambda pattern (T-Pat-Abs). It is used to lookup

references in (T-Pat-Var) and to determine the types of free

variables in a bind pattern (T-Pat-Bind). Second, the Γ𝑡 envi-

ronment collects 𝑥 bindings added by T𝑥U𝑥𝑘 :𝑇𝐾
𝑇

, which will

be made available in the then branch.

The bind pattern T𝑥U𝑥𝑘 :𝑇𝐾
𝑇

matches against an arbitrary

expression locally closed under 𝑥𝑘 :𝑇𝐾 . We represent this

closed term as a curried function taking arguments of the

corresponding types 𝑇𝑘 (T-Pat-Bind). Hence, in the output

environment, we bind 𝑥 to a value of type ⌈𝑇𝑘⌉→⌈𝑇 ⌉. As a
special case of rule T-Pat-Bind, we match on a locally closed

sub-expression where 𝑥𝑘 :𝑇𝐾 is empty, and therefore the type

of 𝑥 is simply ⌈𝑇 ⌉. Note that the 𝑖 in this typing judgment is

only present to inform at which level 𝑥 must be added in Γ𝑡 .

3.3.3 Evaluation. Once more, the operational semantics

in Figure 3 extends the operational semantics in Figure 1.

First of all, to handle quoted pattern matching, we extend

the reduction relation 𝑡 −→𝑖 𝑡 ′ with additional rules. At

staging level 0, we first evaluate the scrutinee until it is a

value (E-Match-Scrut). At all other levels, we also continue

to reduce the then (E-Match-Then) and else branches (E-
Match-Else).

To model the semantics of nested patterns, we introduce

an additional reduction relation 𝑡𝑠 � 𝑡𝑝 / 𝑡𝑡 =⇒Φ 𝑡 ′𝑡 . It states
that the sub-term 𝑡𝑠 matches the sub-pattern 𝑡𝑝 with a sub-

stitution map Φ, which provides a mapping from a variable

defined in the scrutinee to one defined in the pattern. In

addition to matching, the relation also transforms the then
part of the match 𝑡𝑡 into a 𝑡 ′𝑡 where all bindings defined in

the pattern are substituted.

To reduce a match operation, if the pattern matched, we

will evaluate it into 𝑡 ′𝑡 (E-Match-Succ) where 𝑡 ′𝑡 does not
contain any of the bindings defined in the pattern. We say

that a pattern (or sub-pattern) did not match if 𝑡𝑠�𝑡𝑡 / 𝑡𝑒 ≠⇒
Φ 𝑡 ′𝑡 , that is we cannot derive a match. Therefore, if the

pattern did not match we evaluate to the else branch 𝑡𝑒 (E-

Match-Fail).

Exactly as in pattern typing, sub-pattern matching 𝑡𝑠 �
𝑡𝑝 / 𝑡𝑡 =⇒Φ 𝑡 ′𝑡 can match the syntactic form of STLC+Fix,

as well as bind sub-terms. Rules that do not introduce bind-

ings in the then branch will not modify the 𝑡𝑡 /𝑡
′
𝑡 , they will

only propagate the results from sub-evaluation. Rules E-Pat-

Const, E-Pat-Fix, and E-Pat-App are straightforward. Inter-

estingly, when matching a lambda, the substitution Φ will

track the relationship between the binding in the pattern and

in the scrutinee (E-Pat-Abs). When matching a reference to

a binding defined in the pattern, we use Φ to know the name

of the equivalent binding in the scrutinee (E-Pat-Var). We

only match if those references are equivalent under the Φ
mapping.

Finally, we have the bind pattern (E-Pat-Bind), whichmay

match any sub-term as long as it has the correct type and
the correct free variables. First, consider reduction, of the

simplified T𝑥U
𝑇
pattern using E-Pat-Bind.

𝐹𝑉 (𝑡𝑠) ∩ range(Φ) ⊆ ∅ 𝑡 ′𝑠 = ⌈𝑡𝑠⌉
𝑡𝑠 � T𝑥U

𝑇
/ 𝑡𝑡 =⇒Φ [𝑥 ↦→ 𝑡 ′𝑠]𝑡𝑡

In this case, the premise requires us to show that the inter-

section of the free variables of 𝑡𝑠 and the range of Φ is empty.

In other words, it means that 𝑡𝑠 does not contain a reference

to a binding that was defined in the scrutinee. Since it is

only locally closed, it may still have references to binding

defined outside of the pattern match as those will be valid

when inserted in the then branch (cf., rule T-Match). If the

match succeeds, rule E-Pat-Bind reduces to [𝑥 ↦→ ⌈𝑡𝑠⌉]𝑡𝑡 .
Now, consider the case where 𝑥𝑘 :𝑇𝐾 is not empty. This im-

plies that we will match a 𝑡𝑠 that might contain references

to bindings defined in the pattern. In this case, we cannot

simply substitute 𝑡𝑠 for 𝑥 , we first need to bind all free vari-

ables. In particular, for each free variable Φ(𝑥𝑘) defined in

the pattern we 𝜂-expand by creating a lambda that receives a

staged argument of type 𝑥 ′
𝑘
:⌈𝑇𝑘⌉. In the body of that lambda

we substitute Φ(𝑥𝑘) with the ⌊𝑥 ′
𝑘
⌋. This process results in a

curried lambda of the type ⌈𝑇𝑘⌉→⌈𝑇 ⌉.

Example 3.21. In the following example, we show how to

perform 𝛽-reduction at level 1 using quote matching. The

code below is an encoding the HOAS pattern example of

Section 2 for a numerical type N.

𝜆𝑥 :⌈N⌉ .𝑥 match ⌈(𝜆𝑦:N.T𝑓 U𝑦:NN) T𝑧UN⌉ then 𝑓 𝑧 else 𝑥

3.3.4 Values. The value definition in Figure 3 extends the

value definition in Figure 1. At level 0, the pattern match

operations are evaluated away. At any other level, we need to

ensure transitively that sub-terms do not have any splices at

level 1. As the pattern is not evaluated by itself it is considered

a value of its own.

Example 3.22. The ability to match individually quoted

constants allows us to unlift quoted value into a value known

in the current stage. In the example, we unlift a boolean (B)

118

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Nicolas Stucki, Jonathan Immanuel Brachthäuser, Martin Odersky

constant returning the value applied to succ or fail if it is not
a constant.

𝜆𝑥 :B.𝜆succ:B→𝑇 .𝜆fail:𝑇 .
𝑥 match ⌈true⌉ then succ true else

𝑥 match ⌈false⌉ then succ false else fail

3.3.5 Substitution. To handle the new syntactic form of

pattern matching substitution is extended to homomorphi-

cally apply substitution to its sub-terms. As patterns can only

refer to bindings defined in the pattern itself, as ensured by

Γ𝑝 , substitution does not need to go into the pattern.

3.3.6 Soundness. The statements of the progress and pre-

servation theorems carry over unchanged from Section 3.1.

Full proofs can be found in Appendix C [24]. Extending the

proof of progress with a case for pattern matching is trivial;

depending on the pattern reduction, we simply invoke E-

Match-Succ or E-Match-Fail. The proof of preservation

requires a few additional definitions and lemmas. First of all,

we extend the substitution lemma to parallel substitutions:

Lemma 3.23 (Multi-Substitution). ∀𝑖, 𝑗 ∈ N0, if Γ ⊢𝑗 𝑡𝑘 : 𝑇𝑘

and Γ, 𝑥 :
𝑗 𝑇𝑘 ⊢𝑖 𝑡 : 𝑇 then Γ ⊢𝑖 [𝑥𝑘 ↦→ 𝑡𝑘]𝑡 : 𝑇

Next, we state well-formedness of the substitution Φ with

respect to environments Γ𝑝 and Γ𝛿 .

Definition 3.24 (Well-formedness of Φ). Γ𝑝 | Γ𝛿 ⊩ Φ
We say Φ is well-formed with respect to Γ𝑝 and Γ𝛿 , written

Γ𝑝 | Γ𝛿 ⊩ Φ, if and only if Φ is a bijection between dom(Γ𝑝)
and dom(Γ𝛿), such that dom(Γ𝑝) ∩ dom(Γ𝛿) = ∅ and

∀𝑥𝑝 :
1 𝑇 ∈ Γ𝑝 . Φ(𝑥𝑝) :1 𝑇 ∈ Γ𝛿 .

Using Definition 3.24, we can state type preservation of

the pattern reduction. That is, reducing a well typed match

𝑡𝑠 � 𝑝 / 𝑡 =⇒Φ 𝑡 ′ results in a well-typed term 𝑡 ′.

Theorem 3.25 (Preservation of Pattern Reduction).
If (1), (2), (3), (4), (5) then Γ ⊢0 𝑡 ′ : 𝑇 .

Γ; Γ𝛿 ⊢1 𝑡𝑠 : 𝑇1 (1)

Γ𝑝 ⊢1 𝑡𝑝 : 𝑇1 ⊣ Γ𝑡 (2)

Γ; Γ𝑡 ⊢0 𝑡 : 𝑇 (3)

𝑡𝑠 � 𝑡𝑝 / 𝑡 =⇒Φ 𝑡 ′ (4)

Γ𝑝 | Γ𝛿 ⊩ Φ (5)

Here, premises (1) to (3) correspond to premises of rule T-

Match. Finally, the match case in the proof of preservation

follows as a corollary from Theorem 3.25:

Corollary 3.26 (Preservation for Match).
If Γ ⊢0 ⌈𝑡𝑠⌉ match ⌈𝑡𝑝⌉ then 𝑡𝑡 else 𝑡𝑒 : 𝑇 , ⊢1 𝑡𝑠 vl and

𝑡𝑠 � 𝑡𝑝 / 𝑡𝑡 =⇒∅ 𝑡 ′𝑡 , then Γ ⊢0 𝑡 ′𝑡 : 𝑇 .

3.4 Full Calculus: Cross-Platform Quote Matching
We are now ready to connect all pieces in a final calculus

that combines quotes and splices (Section 3.1), cross-platform

global definitions (Section 3.2), and analytical macros (Sec-

tion 3.3). From the combination of the different extensions

emerges one additional feature: the ability to pattern match

against global definitions. This becomes visible in Figure 4,

which adds additional typing and reduction rules for the

composed calculus.

3.4.1 Syntax. The syntax is simply the composition of the

syntax of the base calculus (Figure 1), of the macro extension

(Figure 2), and the pattern matching extension (Figure 3).

3.4.2 Typing. Figure 4 extends the typing judgement with

one additional rule T-Pat-Link. This rule allows references

to library functions to be typed in patterns. As usual with

library functions, the reference can be at any level. Like in

Section 3.2, we assume that all rules are modified to pass the

library environment Σ through all rules of term and pattern

typing.

3.4.3 Evaluation. The operational semantics in Figure 4

extends the combined operational semantics of calculi in

Figure 2 and Figure 3. When matching a library function ref-

erence (E-Pat-Link) we match if the scrutinee is a reference

to the same library function. This pattern does not change or

use Φ in any way as it only needs to handle local variables.

All other rules are modified to add the same Ω to all terms

evaluation as previously done for terms in Section 3.2, pat-

terns are not changed. Thus, reduction rules are of the forms

𝑡 −→𝑖
Ω 𝑡 ′ for term reduction, 𝑝 | Ω −→ 𝑝 ′ | Ω′

for program

reduction, and 𝑡𝑠 � 𝑡𝑝 / 𝑡𝑡 =⇒Φ 𝑡 ′𝑡 for pattern reduction. The

definition of values and substitution immediately arises from

the combination of the different extensions.

Example 3.27. In the following example, we show how the

combined calculus can be used to describe an optimization

of our “DSL for mathematical operations”. We match a nu-

meric expression and check whether it is a call to our global

power DSL function defined in a library. We then unlift the

quoted number using an unlift function similar to the one

in Example 3.22. The code below is an encoding of the last

version of def powCode of Section 2 for a numerical type N.

def powCode = ⌈
fix 𝜆rec:⌈N⌉→N→⌈N⌉ .
𝜆𝑒:⌈N⌉ .𝜆𝑛:N.
𝑒 match ⌈power T𝑥UN T𝑚1UN⌉

then unlift𝑚1 (𝜆𝑚:N.rec 𝑥 (𝑛 +𝑚)) 𝑒
else ... // generate code

⌉ in def power4 = ⌈
𝜆𝑥 :N.⌊powCode ⌈power 𝑥 2⌉ 2⌋

⌉ in 𝑝

3.4.4 Soundness. The proofs of progress and preservation
carry over mostly unchanged. Full proofs can be found in

Appendix D [24].

119

Multi-stage Programming with Generative and Analytical Macros GPCE ’21, October 17–18, 2021, Chicago, IL, USA

Extended Typing Rules Extended Operational Semantics
𝑥 :𝑇 ∈ Σ

Γ𝑝 | Σ ⊢𝑖 𝑥 : 𝑇 ⊣ ∅
(T-Pat-Link)

𝑥 � 𝑥 / 𝑡 =⇒Φ 𝑡

(E-Pat-Link)

Figure 4. Global Definition Matching Extension

4 Implementation
We scaled our calculus to a practical, industrial-strength

implementation of a multi-stage macro system in the pro-

gramming language Scala 3 [23].

4.1 Relation to the Calculus
The static checks as performed by the type checker closely

follow the rules of the calculus as described in this paper.

The choice of syntax for quotes '{t} and for splices ${t} fol-

lows the standard syntax rules of Scala’s string interpolators

s"hello $word" or s"hello ${word}" where world is spliced in

the string. To lift or unlift values, we use the Expr(x) syntax

which corresponds to Expr.apply in expression position and

to Expr.unapply in pattern position. Global library function

definition such as

def 𝑥 = ⌈𝑓 3⌉ in
def 𝑦 = ⌈𝜆𝑎:N.𝑎⌉ in
def 𝑧 = ⌈fix 𝜆rec:N.rec⌉ in . . .

can be expressed in Scala as

def x: Int = f(3)
def y: Int ⇒ Int = (a: Int) ⇒ a
def z: Int = z

To support quoted pattern matching, we extend the pat-

tern syntax to allow the pattern '{pat}. For example, the

expression

𝑠 match ⌈𝑓 T𝑥UN⌉ then 𝑡 else 𝑒

can be expressed in Scala as

s match { case '{ f($x: Int) } ⇒ t; case _ ⇒ e }

where f is a global library reference and $x represents a

locally closed bind pattern. Free variables in bind patterns,

as in T𝑥U𝑦:NN , can be specified as $x(y):Int. The following

term in 𝜆▲ that binds the body of a lambda to 𝑥 and might

have 𝑦 as a free variable

𝑠 match ⌈𝜆𝑦:N.T𝑥U𝑦:NN ⌉ then 𝑡 else 𝑒

can be expressed in Scala as

s match
case '{ (y: Int) ⇒ $x(y):Int } ⇒ t
case _ ⇒ e

Finally, binding an applied function in a pattern

𝑠 match ⌈T𝑓 UN→N 3⌉ then 𝑡 else 𝑒

can be expressed in Scala as

s match { case '{ ($f: Int⇒ Int)(3) } ⇒ t; case _ ⇒ e }

4.2 Additional Features
In addition, the implementation also supports type polymor-

phism, existential types in patterns, and runtime multi-stage

programming.

Type polymorphism. Type polymorphism is expressed

by using the type-class T:Type.

def one[T: Type](e: Expr[T])(using Quotes): Expr[List[T]] =
'{ List($e) }

The typeclass Type is necessary to know the non-erased type

of T at runtime.

Existential types. Existential types in patterns allow the

extraction and use of types that are not statically known.

def fuseMap(e: Expr[List[Int]])(using Quotes) =
e match

case '{ ($ls: List[u]).map[v]($f).map[Int]($g) } ⇒
'{ $ls.map(x ⇒ $g($f(x))) }

case _ ⇒ e

In the example, the pattern and uses of the extracted types

(u and v) can be statically checked. In general, we use lower

case letters for existential type bindings.

Runtime multi-staging. The library function run com-

piles and executes quoted code at runtime. This allows pro-

grammers to perform runtime multi-stage programming.

import scala.quoted.staging.*
given Compiler = ...
val power2 = run('{ (x: Int) ⇒ ${powCode('x, 2)} })

Scope extrusion detection. As Scala is not a pure func-
tional language, we need to make sure that the expressions

are not extruded from their scope through side channels

such as mutable state, exceptions, or even into a run. For
example, we can abuse mutable state to extrude a quoted

local variable follows:

var z: Expr[Int] = null
'{ val x = 7; ${ z = '{x}; ... } }
// z now contains '{x} and x will never be in scope anymore

120

GPCE ’21, October 17–18, 2021, Chicago, IL, USA Nicolas Stucki, Jonathan Immanuel Brachthäuser, Martin Odersky

To avoid this, we add runtime checks that track the stack

of nested splices we are in when we create a quote. To know

if an expression is extruded from its scope, we compare the

stack of the creation site with the one at the call site and

report a runtime error, if the two are not compatible. In our

implementation, all quotation functionality is provided by

means of an implicit/contextual instance of the type Quotes,

which also serves as a representation of a persistent stack of

scopes. Each quote will use the instance that is currently in

scope and each splice will introduce a new instance.

5 Discussion and Related Work
LISP. LISP has a very simple way to treat programs as

data based on the uniform representation of programs as

lists. Quotation turns fragments of (unevaluated) code into

data: '42 is a number, 'a is a symbol, '(+ 3 4) is a list of the
quoted constituents. Quasiquotation—with a backquote—lets

us escape inside a program fragment of e.g., a whole list with

a comma operator that can unquote and evaluate a part of

the quasiquoted expression e.g., `(1 2 ,(+ 3 4)).

Racket. Racket has a sophisticated macro system. On one

hand, contrary to Scala, Racket is dynamically-typed and

on the other, Typed Racket will type-check all expressions

at the run-time phase of the given module [27]. Despite

these fundamental differences, it is worth noting that Racket

supports pattern matching with quasiquotes (quasipatterns).

Interestingly, Racket takes one step further andmuch like the

quasiquote expression form, unquote and unquote-splicing

escape back to normal patterns which is something that we

do not support.

Multi-Stage-Programming. Multi-Stage Programming

(MSP) transfers the concepts of quotes, quasiquotes, un-

quotes and staged evaluation [7, 10] in a statically-scoped,

modularly-type safe environment [21]. MSP, popularised

by MetaML [25] and MetaOCaml [3, 12, 13], made genera-

tive programming easier [5], effectively narrowing the gap

of writing complex solutions of code manipulation such as:

code optimizations [28] and DSL implementations [4, 26].

Fred McBride [15] highlights the need to bridge the gap of

expressing computer-aided manipulation of symbols. Arguing
that it is important to lower the cognitive barrier of reading

andwriting algebraic manipulators such as algebraic simplifi-

cators and integrators, he develops the first pattern matching

facility for LISP; a form that provides a natural description to

increase the user’s problem solving potential. MacroML [9]

used the quotation system of MetaML to define macros. The

two fundamental quasiquotation operators in Scala 3 were

inspired by MetaML/MacroML and BER MetaOCaml.

Template Haskell. Haskell was introduces to metapro-

gramming using quasiquotes with Template Haskell [20].

Neither MetaOCaml, MetaML, or Template Haskell support

pattern matching with quasiquotes.

Squid. Squid [16, 18], a metaprogramming library for

Scala, advances the state of the art of staging systems and

puts quasiquotes at the center of user-defined optimizations.

The user can pattern match over existing code and imple-

ment retroactive optimizations modularly. To the best of our

knowledge, in an earlier version of Squid, Parreaux et al.

[16] were the first to represent locally closed terms as HOAS

functions. However, they later revisited the approach and

instead track free variables in the type. While expressive, this

approach requires advanced typing features such as path-

dependent types, singleton types, and intersection types.

Modal logic. Our calculus is closely related to 𝜆◦ [6] and
𝜆2 [7]. These calculi capture the temporal/modal logic es-

sence of multistage programming. They only support code

generation but not code analysis.

6 Future Work
While the calculus models separate compilation, as well as

generative and analytical macros, it does not yet fully cover

all features of our implementation in Scala 3. In particular,

two important features are type polymorphism and existen-

tial pattern types. It would be interesting to extend the cal-

culus in future work to account for these features. However,

adding them will most likely result in additional complexity

since it will require some kind of type unification.

The calculus assumes the lack of side channels, for which

we use dynamic scope extrusion detection. It is worth for-

malizing this mechanism and precisely describe how it can

be implemented at runtime or expressed as a static check.

Another way to extend the system would be to investi-

gate the possibility to also allow matching on programs that

use quotes, splices, and matches themselves. Adding pattern

matching on quotes and splices seems to involve a more

general notion of staged eta-expansion. In order to add sup-

port for matching on the match itself is less clear and would

require some form of meta-pattern. While both extensions

are interesting, we expect the metatheory to be significantly

more involved, and thus neither of the two features is imple-

mented in Scala 3.

7 Conclusion
We introduced a calculus (𝜆▲) for well-typed and hygienic

multi-stage metaprogramming that allows both generative

and analytical macros. We proved soundness of 𝜆▲ and im-

plemented it in Scala 3.

Acknowledgments
We gratefully acknowledge funding by the Swiss National

Science Foundation under grant 407540_167213 (Program-

ming Language Abstractions for Big Data).

121

Multi-stage Programming with Generative and Analytical Macros GPCE ’21, October 17–18, 2021, Chicago, IL, USA

References
[1] Leif Andersen, Stephen Chang, and Matthias Felleisen. 2017. Super 8

Languages for Making Movies (Functional Pearl). Proc. ACM Program.
Lang. 1, ICFP, Article 30 (Aug. 2017), 29 pages. https://doi.org/10.1145/
3110274

[2] Henk P. Barendregt. 1992. Lambda Calculi with Types. 117–309 pages.
[3] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. 2003.

Implementing Multi-stage Languages Using ASTs, Gensym, and Re-

flection. In Proc. of the 2nd International Conference on Generative
Programming and Component Engineering (Erfurt, Germany) (GPCE
’03). Springer-Verlag, Berlin, Heidelberg, 57–76. https://doi.org/10.
1007/978-3-540-39815-8_4

[4] Krzysztof Czarnecki, John T. O’Donnell, Jörg Striegnitz, and Walid

Taha. 2004. DSL Implementation in MetaOCaml, Template Haskell, and
C++. Springer Berlin Heidelberg, Berlin, Heidelberg, 51–72. https:
//doi.org/10.1007/978-3-540-25935-0_4

[5] Krzysztof Czarnecki, Kasper Østerbye, andMarkus Völter. 2002. Gener-

ative Programming. In Object-Oriented Technology ECOOP 2002 Work-
shop Reader, Juan Hernández and Ana Moreira (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 15–29. https://doi.org/10.1007/3-540-
36208-8_2

[6] Rowan Davies. 2017. A Temporal Logic Approach to Binding-Time

Analysis. J. ACM 64, 1, Article 1 (March 2017), 45 pages. https:
//doi.org/10.1145/3011069

[7] Rowan Davies and Frank Pfenning. 2001. A Modal Analysis of Staged

Computation. J. ACM 48, 3 (May 2001), 555–604. https://doi.org/10.
1145/382780.382785

[8] Matthew Flatt. 2002. Composable and Compilable Macros: You Want

It When? SIGPLAN Not. 37, 9 (Sept. 2002), 72–83. https://doi.org/10.
1145/583852.581486

[9] Steven E. Ganz, Amr Sabry, and Walid Taha. 2001. Macros as

Multi-Stage Computations: Type-Safe, Generative, Binding Macros in

MacroML. SIGPLAN Not. 36, 10 (Oct. 2001), 74–85. https://doi.org/10.
1145/507669.507646

[10] Ulrik Jørring and William L. Scherlis. 1986. Compilers and Staging
Transformations. Association for Computing Machinery, New York,

NY, USA, 86–96. https://doi.org/10.1145/512644.512652
[11] Oleg Kiselyov. 2014. The Design and Implementation of BER MetaO-

Caml. In Functional and Logic Programming, Michael Codish and Ei-

jiro Sumii (Eds.). Springer International Publishing, Cham, 86–102.

https://doi.org/10.1007/978-3-319-07151-0_6
[12] Oleg Kiselyov. 2018. Reconciling Abstraction with High Performance:

A MetaOCaml approach. Foundations and Trends® in Programming
Languages 5, 1 (2018), 1–101. https://doi.org/10.1561/2500000038

[13] Oleg Kiselyov and Chung-chieh Shan. 2010. The MetaOCaml files -

Status report and research proposal. In ACM SIGPLAN Workshop on
ML.

[14] Yannis Lilis and Anthony Savidis. 2019. A Survey of Metaprogramming

Languages. ACM Comput. Surv. 52, 6, Article 113 (Oct. 2019), 39 pages.
https://doi.org/10.1145/3354584

[15] Fred McBride. 1970. Computer Aided Manipulation of Symbols. Ph.D.
Dissertation. Queen’s University of Belfast.

[16] Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. 2017. Quoted

Staged Rewriting: A Practical Approach to Library-Defined Optimiza-

tions. SIGPLAN Not. 52, 12 (Oct. 2017), 131–145. https://doi.org/10.
1145/3170492.3136043

[17] Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. 2017. Squid:

Type-Safe, Hygienic, and Reusable Quasiquotes. In Proceedings of the
8th ACM SIGPLAN International Symposium on Scala (Vancouver, BC,
Canada) (SCALA 2017). Association for Computing Machinery, New

York, NY, USA, 56–66. https://doi.org/10.1145/3136000.3136005
[18] Lionel Parreaux, Antoine Voizard, Amir Shaikhha, and Christoph E.

Koch. 2017. Unifying Analytic and Statically-Typed Quasiquotes. Proc.
ACM Program. Lang. 2, POPL, Article 13 (Dec. 2017), 33 pages. https:
//doi.org/10.1145/3158101

[19] F. Pfenning and C. Elliott. 1988. Higher-Order Abstract Syntax. SIG-
PLAN Not. 23, 7 (June 1988), 199–208. https://doi.org/10.1145/960116.
54010

[20] Tim Sheard and Simon Peyton Jones. 2002. Template Meta-

Programming for Haskell. In Proceedings of the 2002 ACM SIGPLAN
Workshop on Haskell (Pittsburgh, Pennsylvania) (Haskell ’02). Associ-
ation for Computing Machinery, New York, NY, USA, 1–16. https:
//doi.org/10.1145/581690.581691

[21] Yannis Smaragdakis, Aggelos Biboudis, and George Fourtounis. 2017.

Structured Program Generation Techniques. In Grand Timely Topics in
Software Engineering, Jácome Cunha, João P. Fernandes, Ralf Lämmel,

João Saraiva, and Vadim Zaytsev (Eds.). Springer International Pub-

lishing, Cham, 154–178. https://doi.org/10.1007/978-3-319-60074-1_7
[22] Nicolas Stucki, Aggelos Biboudis, Sébastien Doeraene, and Martin

Odersky. 2020. Semantics-Preserving Inlining for Metaprogramming.

In Proceedings of the 11th ACM SIGPLAN International Symposium on
Scala (Virtual, USA) (SCALA 2020). Association for Computing Ma-

chinery, New York, NY, USA, 14–24. https://doi.org/10.1145/3426426.
3428486

[23] Nicolas Stucki, Aggelos Biboudis, and Martin Odersky. 2018. A Practi-

cal Unification ofMulti-Stage Programming andMacros. In Proceedings
of the 17th ACM SIGPLAN International Conference on Generative Pro-
gramming: Concepts and Experiences (Boston, MA, USA) (GPCE 2018).
Association for Computing Machinery, New York, NY, USA, 14–27.

https://doi.org/10.1145/3278122.3278139
[24] Nicolas Stucki, Jonathan Immanuel Brachthäuser, and Martin Odersky.

2021. Proof of Multi-Stage Programming with Generative and Analytical
Macros. Technical Report. EPFL.

[25] Walid Taha and Tim Sheard. 1997. Multi-Stage Programming with

Explicit Annotations. SIGPLAN Not. 32, 12 (Dec. 1997), 203–217. https:
//doi.org/10.1145/258994.259019

[26] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew

Flatt, and Matthias Felleisen. 2011. Languages as Libraries. SIG-
PLAN Not. 46, 6 (June 2011), 132–141. https://doi.org/10.1145/1993316.
1993514

[27] Sam Tobin-Hochstadt, Vincent St-Amour, Eric Dobson, and Asumu

Takikawa. 2021. The Typed Racket Guide - Caveats and Limitations.
[28] T Veldhuizen and E Gannon. 1998. Active libraries: Rethinking the

roles of compilers and libraries. In Proc. of the 1998 SIAM Workshop:
Object Oriented Methods for Interoperable Scientific and Engineering
Computing. 286–295.

122

https://doi.org/10.1145/3110274
https://doi.org/10.1145/3110274
https://doi.org/10.1007/978-3-540-39815-8_4
https://doi.org/10.1007/978-3-540-39815-8_4
https://doi.org/10.1007/978-3-540-25935-0_4
https://doi.org/10.1007/978-3-540-25935-0_4
https://doi.org/10.1007/3-540-36208-8_2
https://doi.org/10.1007/3-540-36208-8_2
https://doi.org/10.1145/3011069
https://doi.org/10.1145/3011069
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/583852.581486
https://doi.org/10.1145/583852.581486
https://doi.org/10.1145/507669.507646
https://doi.org/10.1145/507669.507646
https://doi.org/10.1145/512644.512652
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1561/2500000038
https://doi.org/10.1145/3354584
https://doi.org/10.1145/3170492.3136043
https://doi.org/10.1145/3170492.3136043
https://doi.org/10.1145/3136000.3136005
https://doi.org/10.1145/3158101
https://doi.org/10.1145/3158101
https://doi.org/10.1145/960116.54010
https://doi.org/10.1145/960116.54010
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
https://doi.org/10.1007/978-3-319-60074-1_7
https://doi.org/10.1145/3426426.3428486
https://doi.org/10.1145/3426426.3428486
https://doi.org/10.1145/3278122.3278139
https://doi.org/10.1145/258994.259019
https://doi.org/10.1145/258994.259019
https://doi.org/10.1145/1993316.1993514
https://doi.org/10.1145/1993316.1993514

	Abstract
	1 Introduction
	2 Multi-Stage Macros in Scala 3
	2.1 Generative Multi-Stage Programming
	2.2 Analytical Multi-Stage Programming

	3 Multi-Stage Macros Calculus
	3.1 Core Calculus: Quotes and Splices
	3.2 Macros Extension: Cross-Platform Portability
	3.3 Analytical Extension: Quote Matching
	3.4 Full Calculus: Cross-Platform Quote Matching

	4 Implementation
	4.1 Relation to the Calculus
	4.2 Additional Features

	5 Discussion and Related Work
	6 Future Work
	7 Conclusion
	Acknowledgments
	References

