
Multiple Resumptions and Local Mutable State, Directly
SERKAN MUHCU, Technische Universität Berlin, Germany
PHILIPP SCHUSTER, University of Tübingen, Germany
MICHEL STEUWER, Technische Universität Berlin, Germany
JONATHAN IMMANUEL BRACHTHÄUSER, University of Tübingen, Germany

While enabling use cases such as backtracking search and probabilistic programming, multiple resumptions
have the reputation of being incompatible with efficient implementation techniques, such as stack switching.
This paper sets out to resolve this conflict and thus bridge the gap between expressiveness and performance.
To this end, we present a compilation strategy and runtime system for lexical effect handlers with support
for multiple resumptions and stack-allocated mutable state. By building on garbage-free reference count-
ing and associating stacks with stable prompts, our approach enables constant-time continuation capture
and resumption when resumed exactly once, as well as constant-time state access. Nevertheless, we also
support multiple resumptions by copying stacks when necessary. We practically evaluate our approach by
implementing an LLVM backend for the Effekt language. A performance comparison with state-of-the-art
systems, including dynamic and lexical effect handler implementations, suggests that our approach achieves
competitive performance and the increased expressiveness only comes with limited overhead.

CCS Concepts: • Software and its engineering → Compilers; Control structures; Functional languages,
Imperative languages; • Theory of computation→ Control primitives.

Additional Key Words and Phrases: algebraic effects, effect handlers, multiple resumptions, local mutable state,
stack switching, garbage-free reference counting

ACM Reference Format:
Serkan Muhcu, Philipp Schuster, Michel Steuwer, and Jonathan Immanuel Brachthäuser. 2025. Multiple
Resumptions and Local Mutable State, Directly. Proc. ACM Program. Lang. 9, ICFP, Article 260 (August 2025),
30 pages. https://doi.org/10.1145/3747529

1 Introduction
A contemporary way to structure advanced patterns of control-flow transfers is by using effect
handlers [Plotkin and Pretnar 2013]. In the last decade, effect handlers have seen a growing
adoption in research languages (such as Eff [Plotkin and Pretnar 2013], Frank [Lindley et al.
2017], Koka [Leijen 2017b], Effekt [Brachthäuser et al. 2020], Helium [Biernacki et al. 2019], Lexa
[Ma et al. 2024], Flix [Lutze and Madsen 2024], and more) as well as in industrial languages like
OCaml [Sivaramakrishnan et al. 2021] andWebAssembly [Phipps-Costin et al. 2023]. Effect handlers
decouple the use of effects in effectful programs from their concrete implementation in an effect
handler. Calling an effect operation transfers control from its use site to the corresponding handler
and captures the delimited continuation up to the handler. A handler can then decide to not resume
the continuation (e.g., for exceptions), resume it exactly once in tail position (e.g., for dynamic
binding), resume it exactly once but later (e.g., for async/await), or resume it multiple times.

Authors’ Contact Information: Serkan Muhcu, Technische Universität Berlin, Berlin, Germany, serkan.muhcu@tu-berlin.
de; Philipp Schuster, University of Tübingen, Tübingen, Germany, philipp.schuster@uni-tuebingen.de; Michel Steuwer,
Technische Universität Berlin, Berlin, Germany, michel.steuwer@tu-berlin.de; Jonathan Immanuel Brachthäuser, University
of Tübingen, Germany, jonathan.brachthaeuser@uni-tuebingen.de.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/8-ART260
https://doi.org/10.1145/3747529

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

https://orcid.org/0009-0004-0138-4218
https://orcid.org/0000-0001-8011-0506
https://orcid.org/0000-0001-5048-0741
https://orcid.org/0000-0001-9128-0391
https://doi.org/10.1145/3747529
https://orcid.org/0009-0004-0138-4218
https://orcid.org/0000-0001-8011-0506
https://orcid.org/0000-0001-5048-0741
https://orcid.org/0000-0001-9128-0391
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3747529

260:2 Muhcu, Schuster, Steuwer, and Brachthäuser

Multiple Resumptions. Indeed, the ability to resume multiple times (i.e., multi-shot continuations
in contrast to one-shot continuations that can only be resumed at most once), is a very useful
language feature that facilitates implementations of logic programming [Haynes 1987; Saleh and
Schrijvers 2016], probabilistic programming [Goldstein and Kammar 2024; Kiselyov and Shan 2009;
Phan et al. 2019], parsing [Leijen 2016], backtracking search [Friedman et al. 1984], and more.
However, being able to resume continuations multiple times seemingly precludes efficient

implementation. In consequence, languages like OCaml choose to not support it.
This example does not resume a continuation more than once. This also holds true for
other use cases such as generators and coroutines. Hence, our continuations are one-shot,
and resuming the continuation more than once raises an Invalid_argument exception.
It is well-known that one-shot continuations can be implemented efficiently.

— [Sivaramakrishnan et al. 2021]
Similarly, recent proposals for WebAssembly choose to not support it.

[. . .] an extension to support multi-shot continuations would be interesting, but difficult to
support efficiently or robustly in existing Wasm engines.

— Phipps-Costin et al. [2023]
Others, like Java’s implementation of lightweight fibers, officially only support one-shot con-
tinuations, but allow the programmer to manually copy the continuation, which is fragile and
non-modular for nested handlers.

Loom currently implements what can be called "[one-shot] asymmetric delimited continu-
ations with multiple named prompts," but with cloning, you get [multi-shot] delimited
continuations. — Pressler [2018]

Industry-grade implementations that support multiple resumptions, like GHC’s [King 2022] or
Scala Native’s [Pham and Odersky 2024], defensively copy the continuation, incurring a cost even
for one-shot usage of the continuations. To efficiently support multi-shot continuations and avoid
copying, some implementations alternatively represent the runtime stack as an immutable data
structure [Brachthäuser et al. 2018; Farvardin and Reppy 2020]. However, this implementation
strategy seems fundamentally incompatible with local, i.e. stack-allocated, mutable state.

Local Mutable State. Mutable state is believed to interact badly with multiple resumptions.
Whether to allow continuations to be multi-shot has far-reaching consequences related
to performance and program reasoning, especially in languages with mutable references.
[. . .] Certain standard program transformations (and thus compiler optimisations) are
unsound in the presence of multi-shot continuations because the rules of reasoning that
justify them no longer hold — van Rooij and Krebbers [2025]

Continuations are parts of the runtime stack including stack-allocated mutable references. If
resumed twice, the first resumption might update references and affect the second resumption.
Implementations that support mutable references and multiple resumptions, like Koka and Effekt,
create a backup of the state on capturing the continuation and restore it upon resumption, negatively
impacting performance. If the continuation is used at most once, the backup is unnecessary.

Stack Switching for Lexical Effect Handlers. There are two main variations of effect handlers:
• Dynamic Effect Handlers. Traditionally, like exceptions, effect handlers are dynamically
scoped. Calling an effect operation entails unwinding the call stack to both search for the
correct handler and to capture the continuation. This form of effect handling is implemented
in Eff [Plotkin and Pretnar 2013], Koka [Leijen 2017b], Frank [Lindley et al. 2017], and OCaml
[Sivaramakrishnan et al. 2021].

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

Multiple Resumptions and Local Mutable State, Directly 260:3

• Lexical Effect Handlers. Alternatively, a lexical connection can be established between an
effect handler and the use of an effect operation. This way, calling an effect operation reduces
to a dynamic dispatch followed by unwinding the call stack to capture the continuation. This
form of effect handling is implemented in Effekt [Brachthäuser et al. 2020], Helium [Biernacki
et al. 2019], Lexa [Ma et al. 2024], and Scala [Pham and Odersky 2024].

It has been shown recently that lexical effect handlers enable a low-level implementation of constant-
time continuation capture and resumption by passing a direct pointer to a stack segment, instead
of linearly searching for a handler or a marker [Ma et al. 2024]. However, their approach seems
incompatible with multiple resumptions.

Contributions. Our goal is an efficient implementation of lexical effect handlers supportingmultiple
resumptions and local mutable references, with the following properties:

• correct and predictable interaction between those two
• constant-time capture and resume for one-shot use of continuations
• constant-time read and write for local mutable references

Reconciling these conflicting goals seems difficult. How do we know which references to backup
and restore, if at all? Can we know upfront how often a continuation is resumed? How can we
avoid defensive copying? In this paper, we generalize the approach of Ma et al. [2024] to support
multi-shot continuations, while retaining good performance characteristics. Our solution rests on
the following key observations:

Stable prompts. To enable constant-time stack switching and state access, we need to be able to
access stack segments directly, without traversal. This can be achieved by using pointers to stacks.
However, multiple resumptions require stack copying, which invalidates any pointers to this stack.
We introduce prompts with stable addresses as an indirection to stacks. This allows copying stacks,
while only having to update a single pointer, and pointers to the stable prompts remain valid.

Reference counting. To efficiently support resuming exactly once, we need to avoid copying. To
this end, we use garbage-free reference counting [Reinking et al. 2021], which provides us with an
up-to-date reference count. This way we only copy whenever we resume a shared continuation.

While these core ideas seem appealingly simple, they require a carefully designed runtime system,
which we formalize in Section 3. Furthermore, using reference counting also comes with its price:
we have to keep the reference counts up-to-date. Consequently, while we support a one-shot use of
continuations (e.g. async / await) in constant time, discarding the continuation (e.g. exceptions)
requires us to unwind the continuation in linear time. Moreover, the additional indirection over
the prompt incurs an additional minimal overhead per stack switching operation.

1.1 Contributions
We present the design and implementation of a runtime system for multi-shot delimited control
and local mutable references by making the following contributions:

• We introduce key ideas based on an example (Section 2). Our design and implementation
additionally supports first-class functions, proper tail calls, effect-polymorphic recursion,
growable stacks, region-based memory, and bidirectional handlers.

• We formalize the compilation as well as the runtime system as a translation from a low-level
intermediate language MCode with support for multiprompt delimited control and local
mutable state to an instruction set ASM (Section 3).

• We assess the practical consequences of our approach with an implementation of a novel
backend for the Effekt language, targeting LLVM (Section 4). Our new backend is feature

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

260:4 Muhcu, Schuster, Steuwer, and Brachthäuser

complete and successfully compiles the standard library spanning around 10k lines of code
as well as another 10k lines of code of tests.

• We evaluate the performance of our implementation by comparing to other state-of-the-art
implementations on community benchmarks (Section 5). Results suggest that providing the
additional expressivity of multiple resumptions only comes with limited cost compared to the
implementation by Ma et al. [2024], while it outperforms other implementations on average.

1.2 Limitations
Our approach has some limitations:

• There is an additional indirection when accessing local mutable references, which leads to a
constant-time overhead. We assess this overhead in Section 5. Our measurements suggest
that it is insignificant in benchmarks for effect handlers, but significant in loops that heavily
use local mutable references.

• Resumptions are not reentrant, meaning that a continuation cannot be resumed, while it is
already running. Our implementation leads to a runtime error in this case. We discuss this
limitation in Section 6.

We begin by introducing our approach by example (Section 2), before we formalize (Section 3) and
evaluate it (Sections 4 and 5).

2 Multi-shot Stack Switching by Example
In this section, we demonstrate multiple resumptions, local mutable state, and their non-trivial
interaction. We present examples in Effekt [Brachthäuser et al. 2020], a general-purpose program-
ming language with lexical effect handlers. We then illustrate the key insights behind our runtime
system with efficient support for both features. Later, in Section 3, we will revisit the examples
more formally in a low-level intermediate representation.

Simple effects and mutable state. Effectful programs are those that interact with their context non-
trivially. They stand in contrast to pure programs, whose only interaction with their context is
by returning a result when they are done. Effect signatures specify the shape of these interactions
between programs and their contexts. This is in analogy with how types specify the shape of data.
For example, consider the following effect signature for generators of integer numbers.

effect emit(v: Int): Unit

It specifies that the program emits values of type Int to its context and receives results of type
Unit in return.
Effectful functions use effects according to their signatures. In addition to their parameter and

return types, we track their effects. For example, we can generate a stream of integer numbers.
def range(l: Int, h: Int): Unit / emit = if (l < h) { do emit(l); range(l + 1, h) }

The effectful function range receives a lower and an upper bound of type Int, returns a value of
type Unit, and uses an effect emit. As long as l < h, we do emit(l) and recurse.

The meaning of this function depends on the context it is called in. Indeed, it must emit the integer
numbers somewhere. Effect handlers provide this meaning when they are part of the program’s
context. For example, we can compute the sum of all values emitted by a given stream.

def sum { stream: () ⇒ Unit / emit }: Int = {

var s = 0;

try stream() with emit { v ⇒ s = s + v; resume(()) };

return s }

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

Multiple Resumptions and Local Mutable State, Directly 260:5

To do so, we allocate a local mutable reference s, initialized to 0. We then run the given program
stream under a handler for the emit effect. For each emitted value v, we increase the state of s
and resume the program with the unit value (). Finally, we return the state of s.

The local mutable reference s shall not be used outside the body of sum. This way, the mutable
state is encapsulated, and purity is preserved. We can allocate the value of s on the runtime stack,
avoiding overhead. Functions and handlers can close over local mutable references like s. The
escaping of local mutable references can be prevented in the same way general effect safety is
achieved. In fact, var s = 0 can be thought of as a small handler for mutable state.

Finally, we compute the sum of a stream of numbers by composing the effectful program with the
handler function: sum {range(1,5)}. The effectful program range(1,5) repeatedly emits a value
to the effect handler installed in sum, which updates the local mutable reference s and resumes.
This interaction is governed by the effect signature emit. While the handler function sum uses a
mutable reference locally, the overall program is pure from the outside. This is a common pattern.
Handler functions accumulate information and keep state using local mutable references.

Resuming multiple times. In the previous example, the handler for emit resumed the continuation
exactly once after increasing s with the received value. In general, handlers can choose to never
resume the continuation, resume it later, or resume it multiple times. The latter results in an
interesting interaction with local mutable references. To illustrate, let us now consider a more
advanced use of effect handlers: checkpointing. Here, we use two effect operations, save and retry,
for saving the current program state and rolling it back.

effect save(): Unit effect retry(): Nothing

The following program uses these effects. It asks the user to enter a stream of numbers and provides
the ability to commit the data entered so far and to undo everything up until the last commit.

def user(): Unit / {emit, save, retry} = input() match {

case Enter(n) ⇒ do emit(n); user()

case Commit() ⇒ do save(); user()

case Undo() ⇒ do retry()

case Done() ⇒ () }

When the user enters a number n, we emit it. When comitting the current state, we use save, and
when the user wants to undo changes, we use retry. The following handler now handles the two
operations, save and retry, by installing a checkpoint and retrying from the last one, respectively.

def checkpointing[R]{ program: () ⇒ R / {save, retry} }: R = {

var c = None();

try program()

with save { c = Some(resume); resume(()) }

with retry {

if (c is Some(resumption)) { resumption(()) }

else { checkpointing{program} } } }

We first allocate a local mutable reference c for holding the last saved resumption, initially
empty. When the program uses save, we overwrite the saved resumption with the current one,
Some(resume), and then resume the program. When the program uses retry, we check if there
is a saved resumption, and if there is, we resume from that point. If there is not, we restart the
program from the beginning. In neither case do we use resume(()), since we want to abort the
current computation and resume from an earlier point. This handler, depending on the handled
program, will thus invoke some resumptions once, zero times, or multiple times.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

260:6 Muhcu, Schuster, Steuwer, and Brachthäuser

Now, we can compute the sum of user inputs with checkpointing and rollback by executing the
program user() under the two handler functions, sum and checkpointing.

checkpointing { sum { user() } }

For example, inputs Enter(1), Commit(), Enter(2), Undo(), Enter(3), Done() result in
the total sum 1 + 3, because the entry of the number 2 is rolled back. For this to work, we have to
back up the current state of the local mutable reference s, which is hidden in sum. More generally,
checkpoints and continuations, where it can only be known at runtime how often resumption
happens, are a compelling use case for multi-shot continuations [Koskinen and Herlihy 2008].

To backtrack or not to backtrack. Not every mutable reference that exists in the program state should
be rolled back when a continuation is resumed for the second time. Consider the following program,
where we create an outer mutable reference i, install a checkpointing handler, and create an inner
mutable reference s. We repeatedly retry from the save point, incrementing both references.

var i = 0;

checkpointing {

var s = 0;

do save();

println(s);

i = i + 1; s = s + 1;

if (i < 4) { do retry() } }

Possible outcomes.
(1) The program prints 0, 0, 0, 0 and halts;
(2) The program prints 0, 1, 2, 3 and halts;
(3) The program prints 0, 0, 0, 0 . . . forever; or
(4) The program prints 0, 1, 2, 3 . . . forever.

When executing this program, depending on the backtracking behavior of both mutable references,
one of four things (on the right) can conceivably happen. We follow Kiselyov et al. [2006] and argue
that behavior (1), where s is backed up and restored but i is not, is the desired one. From the point
of view of checkpointing, i is a global mutable reference, while s is a local mutable reference.
Operationally, upon save, the captured continuation is delimited by the handler checkpointing
and thus contains a copy of the state of s but not a copy of the state of i.

This backtracking behaviour enables local reasoning about the state of local mutable references,
which is desirable in many cases. Take the following example, where we write to a local mutable
reference x between two function calls.

var x = 0; f(x); x = x + 1; f(x) f(0); f(1)

With multiple resumptions, the first call to f might return multiple times, each time incrementing
x. But since the state of x is backtracked, the program is still equivalent to the one on the right.

This is in contrast to global mutable references, whose state is not preserved across resumptions.
Effekt offers those in its standard library. Here is the same example using a global mutable reference:

val x = ref(0); f(x.get()); x.set(x.get() + 1); f(x.get())

Using the library offers a clear syntactic distinction between local and global mutable references.

Existing implementations. Multiple resumptions and backtrackable mutable state seem to be at odds
with efficient implementation strategies like stack switching [Ma et al. 2024; Phipps-Costin et al.
2023; Sivaramakrishnan et al. 2021], where capturing and resuming a continuation merely amounts
to changing a few pointers. In cases where a continuation is resumed at most once, it seems fine to
destructively update the state allocated on the stack. However, if we resume multiple times, this
would not align with the desired backtracking semantics described above.

As a consequence, implementations of effect handlers and mutable state either do not support
multiple resumptions [Ma et al. 2024; Phipps-Costin et al. 2023; Sivaramakrishnan et al. 2021] or

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

Multiple Resumptions and Local Mutable State, Directly 260:7

perform defensive copying (like Effekt and Koka). In this paper, we show that it is indeed possible
to reconcile multiple resumptions and backtrackable mutable state with stack switching.

2.1 Simple Stack Switching by Example
To illustrate our approach, let us start by inspecting how stack switching works in the simpler
example program sum { range(1, 5) }. As a first step, the Effekt compiler translates the program
into an intermediate representation based on System C, in capability-passing style and using
multi-prompt delimited control [Brachthäuser et al. 2022; Brachthäuser et al. 2020].

sum { {e} ⇒ range(1, 5){e} }

def range(l: Int, h: Int){e: emit} =

if (l < h) {

e.emit(l);

range(l + 1, h)

}

def sum { stream: {emit} ⇒ Unit }: Int = {

var s = 0;

reset { p ⇒
def e = new emit { v ⇒
shift(p) { k ⇒ s = s + v; k(()) } }

stream{e} }

return s }

Importantly, the two aspects of handling an effect are translated into two different concepts. Firstly,
a capability e is created as an instance of emit, containing the handler implementation. This
capability is then explicitly passed to functions that previously used the emit effect, such as range.
Secondly, the capability can capture the continuation by means of shift. The captured continuation
is delimited by the corresponding reset. The connection between reset and shift is established
by a freshly introduced prompt p.

offset

next

prompt

next

Fig. 1. Graphical representation of an individual stack segment (left) and its short-hand notation (right). The
stack is valid, that is, the prompt points back to the stack itself.

In our stack-switching implementation, programs run with ameta stack, a linked list of individual
call stacks. Operationally, reset introduces a fresh call stack and links it to the current meta stack. In
addition to the new stack segment, reset also introduces a fresh prompt, which is a heap-allocated
mutable cell that points back to the stack. In the following, we use the graphical notation from
Figure 1. We refer to stacks where the prompt points back to the stack itself as valid and depict
them using the shorthand notation on the right, with a green double-headed arrow.

Constant-time continuation capture. Figure 2 (left) shows our meta stack when calling e.emit(1),
that is, after evaluating the reset and entering the function range, just before the call to shift(p).
Programs run with a meta stack pointer msp, which points to the first stack. In this example, it
contains the frame range(2, 5), which is the delimited continuation in range after the call to
emit. The next stack in the list contains a frame returning the value of s, and then the a frame that
contains the current state of s, which is 0. Capturing the continuation by switching stacks now
amounts to the following steps:

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

260:8 Muhcu, Schuster, Steuwer, and Brachthäuser

msp
range(2, 5)

𝑝

return s

s := 0 null range(2, 5)

𝑝 𝑘

msp return s

s := 0 null

Fig. 2. Capturing the continuation k up to (and including) prompt p.

(1) We dereference prompt p, finding that (in this particular case) it points to the first stack
segment. In general, we can capture arbitrarily many stack segments.

(2) We swap msp and next so that the meta stack pointer points to the next stack segment and
next creates a cycle. In our approach, continuations always have this cyclic form.

We can notice that the continuation is valid, as for all contained stack segments (in this case only
one), the prompts point back to the segment itself. As we will see, in our approach, a continuation
can be in one of two states: either it is valid, as described above, or it is invalid, which means that
for all stack segments, the prompt cell points somewhere other than the stack segment itself.

Constant-time continuation resumption. The following picture in Figure 3 (left) illustrates the
state of program execution after increasing s by the emitted value 1 and right before resuming.

range(2, 5)

𝑝 𝑘

msp return s

s := 1 null

msp
range(2, 5)

𝑝

return s

s := 1 null

Fig. 3. Resuming continuation k.

Before we resume a continuation, we inspect its reference count to determine if we need to copy
it or not. Since we rely on up-to-date reference counts, garbage-free reference counting [Reinking
et al. 2021] is crucial to our approach. In this particular case, we have a unique reference to k.
We then check whether the continuation is valid. Since continuations are either valid or invalid,
it suffices to check one stack for validity. In this particular case, the continuation is valid. We
resume by swapping the two pointers next and msp, as illustrated. For this one-shot use of the
continuation, resuming thus only requires 3 loads, 1 store, and 1 pointer comparison. Importantly,
this is independent of the size of the continuation: capturing and resuming can be performed in
constant time, independent of the number of handlers in between.

Constant-time backtrackable mutable state. In the example above, we destructively updated the
state of the stack-allocated mutable reference. In our implementation, local mutable references are
represented as pairs of a prompt and an offset on the stack. Reading a mutable reference amounts
to first loading the base address of the corresponding stack segment from the prompt, followed by
a second load relative to the base address. Reading and writing mutable references thus also occur
in constant time, independent of the number of handlers in between.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

Multiple Resumptions and Local Mutable State, Directly 260:9

2.2 Multiple Resumptions
So far, our approach does not seem very different from existing stack-switching implementations,
which only work for one-shot continuations. To generalize to multi-shot continuations, we add
three key ingredients: (1) checking the reference count on the continuation to determine whether
the reference is unique, (2) using prompts as separate mutable references that point to stacks, and
consequently, (3) checking whether the continuation is valid before resuming. While unnecessary
for one-shot continuations, we will see why these are the key enablers for multi-shot continuations.

msp
user()

𝑝

return s

s := 1

@8f

c := None null

Fig. 4. Before capturing the continuation.

To this end, let us consider our example checkpointing { sum { user() } } after processing
Enter(1) in user(), in the case of Commit, when performing the call to do save(). In this
example, shown in Figure 4, we have three stack segments, which correspond (from right to left)
to the top-level program, the delimiter installed by checkpointing, and the delimiter installed by
sum. Since we have not stored any continuation, c is initialized with None, and since we already
processed Enter(1), the running total s is 1. To handle the call to save, we invoke the body
shift(p) { k ⇒ c = Some(k); k(()) } of the corresponding capability. Capturing the
continuation now proceeds as described above.

user()

𝑝 𝑘

return s

s := 1

@8f

msp
c := Some(k) null

Fig. 5. After capturing continuation k and storing it in c.

We successfully captured the continuation, stored it in c, and increased its reference count, as
shown in Figure 5. Next, we now want to resume the continuation k(()). Checking the reference
count, we notice that we are not the unique owner. Proceeding as previously and directly switching
back to the continuation would lead to destructive updates of the involved stack segments. Since
we are not the sole owner of the continuation, we create a copy, as shown on the left in Figure 6.

Noticeably, the copy k′ has the same structure, and the stack segments point to the same prompts
as the original k. However, those prompts do not point back to the copy, and hence the copy is not
valid, depicted with a red single-headed arrow. In order to resume the copy, we need to revalidate
it, the result of which can be seen on the right-hand side. Revalidating the copy k′ invalidates
the original k. Since the copy k′ is now both unique and valid, we can resume it exactly as in the
previous section. The next entered value, 2, will lead to a destructive update of state s in this copy,
while the original continuation k stays unchanged. Consequently, the handler implementation of
retry, upon user input Undo(), will restore another fresh copy of k, which again starts off with s
having value 1, implementing the correct backtracking behavior.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

260:10 Muhcu, Schuster, Steuwer, and Brachthäuser

user()

𝑘

return s

s := 1

user() 𝑘′
return s

s := 1

user()

𝑘

return s

s := 1

user() 𝑘′
return s

s := 1

Fig. 6. Resuming a shared continuation requires copying it (result shown left). Resuming k′ requires revali-
dating (result shown right).

2.3 Section Conclusion
We have seen how multiple resumptions and mutable state interact and how useful behavior
emerges from this interaction. To reconcile efficient stack switching with multiple resumptions
requiring copying, our implementation technique rests upon three key aspects. Firstly, we introduce
separate prompt cells with stable addresses. Individual stack segments do not need a stable address
and can be copied. Secondly, we use the reference count of a continuation to determine whether
we are resuming it for the last time (or possibly the only time). If not, we fall back to copying the
continuation. Thirdly, we require prompts to point to the active stack segments. To maintain this
invariant, each stack segment keeps a pointer to the corresponding prompt. This way we support
constant-time continuation capture, state access and modification, and continuation resumption in
the one-shot case while being prepared to resume multiple times when necessary.

3 Formalization
In this section, we formalize our approach to compilation of and runtime support for delimited
control operators and local mutable references with efficient stack switching. To focus on the
essentials, we start our formal treatment with a stripped-down language MCode that includes
delimited control operators and local mutable references but not much more. To illustrate the
operational behavior on contemporary hardware, we then define the compilation from MCode to
an idealized machine instruction set ASM. The compiled code uses runtime system features for
delimited control operators and local mutable references, which we also define. We then discuss
the time complexity of these features.

3.1 Source Language MCode

Figure 7 lists the syntax of our source language MCode. Since our goal is the formalization and
explanation of operational behavior, it is untyped, and we neither guarantee type nor effect
safety. Moreover, it is not intended for direct use by programmers but rather as an intermediate
representation. It does not feature nested expressions, and free variables in closures and pushed
framesmust be explicit.We use themeta variable f to denote known top-level function definitions, in
contrast to the meta variable x, which stands for values created at runtime. Moreover, by convention,
instead of x, we use c for closures, p for prompts, k for continuations, and r for references.

A program is a list of potentially mutually recursive top-level definitions with name f , parameters
x, and body s. We perform a direct jump with arguments to f using jump f (x). These jumps are
always tail calls that do not touch the stack. When we require a different return context, we must

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

Multiple Resumptions and Local Mutable State, Directly 260:11

Programs:
P ::= def f (x) = s Function definitions

Statements:
s ::= jump f (x) Direct jump

| push(x){ x ⇒ s }; s Push stack frame
| return x Pop and run topmost stack frame

| c = new(x){ (x) ⇒ s }; s Closure allocation
| call c(x) Indirect jump

| p = reset; s Delimit computation
| k = shift p; s Capture delimited continuation
| resume k; s Resume continuation

| r = ref x; s Allocate mutable reference
| x = get r ; s Load value from reference
| set r x; s Store value into reference

Variables:
f Functions
x Values
c Closures
p Prompts
k Continuations
r References

Fig. 7. Syntax of programs and statements inMCode. Free variables in frames and closures are explicit.

explicitly push a frame with push(y){ x ⇒ s }. Only the frame environment y and the returned
value x are available in the body s. We return to the most recently pushed frame with return x.
Similarly, when we create a closure with c = new(y){ (x) ⇒ s }, only the closure environment y
and the parameters x are available in the body s. Calls to closures call c(x) are indirect tail calls;
for non-tail positions, we must push a frame first.

The language constructs discussed so far are fairly standard. Let us now turn to delimited control
operators and local mutable references. We install a delimiter with p = reset; s. In return, we
receive a prompt p, which marks this position in the context and is available in the delimited
statement s. We shift to a marked position with k = shift p; s. This gives us a continuation k in
statement s. We can then resume this continuation with resume k; s, where s runs in the context
of the reinstalled continuation k. Prompts are first-class but always created freshly and associated
with one specific delimiter (similar to spawn/controller by Hieb and Dybvig [1990]). We allocate a
local mutable reference r with initial value x that is available in statement s with r = ref x; s. Like
prompts, references are first-class but only safe to use in the dynamic extent of the ref operator.

Example. In the following, we illustrate how we translate the motivating example from Section 2,
which already is in capability-passing style, to MCode, making explicit frames and closures.

def range(l, h, emit) =

if (l < h) {
push(l, h, emit) { _ ⇒
jump range(l + 1, h, emit)

};
call emit(l)

} else {
return ()

}

def sum(stream) =

s = ref 0;
push(s) { _⇒
x = get s; return x };

p = reset;
emit = new(p, s) { (v) ⇒
k = shift p;
x = get s; set s (x + v);
resume k; return () };

call stream(emit)

stream = new() { (emit) ⇒
jump range(1, 5, emit)

};
jump sum(stream)

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

260:12 Muhcu, Schuster, Steuwer, and Brachthäuser

The effectful function range emits a stream of integer numbers. In explicit capability-passing style,
it not only receives l and h, but also a capability emit for doing so. The capability is an ordinary
function. Before calling it, we push a frame that remembers to generate the rest of the values. The
handler function sum provides the capability emit to the given program stream. This capability
closes over the freshly installed prompt p and the freshly allocated reference s. It shifts to the prompt,
updates the state, and resumes. After returning through the delimiter, but before deallocating the
reference, we get the final value x, which we return as the overall result. To compose the handler
function with the effectful program, we create a closure stream that receives the emit capability
and jumps to range. We then jump to sum with this closure argument. Notably, these examples
are written in explicit capability-passing style using delimited control operators and local mutable
references. We distinguish between direct jumps and indirect calls. All jumps and calls are tail calls,
and frames have to be pushed explicitly.

Tail-resumption optimization. One trivial but common usage pattern of effect handlers is to
resume exactly once in tail position. Such a tail resumptive handler effectively expresses dynamic
binding [Brachthäuser and Leijen 2019]. To improve performance, languages like Koka [Leijen
2017a; Xie and Leijen 2021] or Effekt [Brachthäuser 2024] optimize these handlers to avoid capturing
the continuation altogether. The optimization is typically syntactic and does not cover other one-
shot usages of the continuation. We observe that in this example, in the body of emit, we shift and
then resume exactly once in tail position, and could optimize emit to not shift and resume at all.

emit = new(s) { (v) ⇒ x = get s; set s (x + v); return () };

This optimization is local and does not affect the rest of the program. It is valid since, thanks to the
lexicality of prompts and references, we know that s still refers to the same reference. It is local
because we perform capability passing. Capabilities are closures that are always called in the same
way, whether they use effects or not.

3.1.1 Semantics. Figure 8 defines the operational semantics of MCode as an abstract machine.
Machine configurations consist of the statement s under execution, environment E, stack K , and
program P . Environments map variables to values v, and stacks are lists of frames F . Values
and frames contain markers m, which are freshly generated at runtime. Values are closures with
environment E, parameters x, and body s, continuations with delimiter m and stack K , or markers
m. As we will see, we use marker values for both prompts and references. Frames are calling
contexts { E, x ⇒ s }, delimiters reset m, or references ref m v with current state v. The first set
of reduction rules is completely unsurprising. We omit program P from all rules except jump.

When we execute p = reset, we generate a fresh marker m, which we push onto the stack and
bind to p. This installs a delimiter with marker m. When we execute k = shift p, we look up the
marker m that p stands for. We split the stack at this marker, bind the prefix as continuation k, and
keep the suffix as the stack. When we then execute resume k, we simply restore the delimiter and
stack. Finally, when we return through a delimiter, we discard it and return to the next frame.

When we execute r = ref y, we generate a fresh marker m and allocate a reference with m and
store the current value of y on the stack. We bind the reference r to this marker. When we execute
x = get r , we find the state v corresponding to the marker m of reference r on the stack. When
we execute set r y, we replace the state at marker m of reference r with the value of y. Finally,
when we return through a reference on the stack, we discard it and return to the next frame.

When a marker for a delimiter or a reference is not found on the stack, we leave the behavior
undefined in this semantics. It is the responsibility of a high-level language, possibly with a type-
and-effect or region system, to rule out these cases [Brachthäuser et al. 2020; Schuster et al. 2022].

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

Multiple Resumptions and Local Mutable State, Directly 260:13

Configurations:
M ::= ⟨ s E K P ⟩

Environments:
E ::= x ↦→ v

Stacks:
K ::= F :: K | •

Markers:
m ::= @a5f | @4b2 | ...

Values:
v ::= { E, (x) ⇒ s } | cont K m | m

Frames:
F ::= { E, x ⇒ s } | ref m v | reset m

Machine Steps:
⟨ jump f (y) | E | K | P ⟩ → ⟨ s | x ↦→ E(y) | K | P ⟩ where def f (x) = s ∈ P

⟨push (y) { x ⇒ s0 }; s | E | K ⟩ → ⟨ s | E | {E0, x ⇒ s } :: K ⟩ where E0 = y ↦→ E(y)

⟨ return y | E | { E0, x ⇒ s } :: K ⟩ → ⟨ s | E0, x ↦→ v | K ⟩ where v = E(y)

⟨ c = new (y) { (x) ⇒ s0 }; s | E | K ⟩ → ⟨ s | E , c ↦→ {E0, (x) ⇒ s0 } | K ⟩ where E0 = y ↦→ E(y)

⟨call c(y) | E | K ⟩ → ⟨ s | E0, x ↦→ E(y) | K ⟩ where E0, (x) ⇒ s = E(c)

Delimited Control
⟨p = reset; s | E | K ⟩ → ⟨ s | E, p ↦→ m | reset m :: K ⟩ where m fresh

⟨k = shift p; s | E | K1 :: reset m :: K2 ⟩ → ⟨ s | E, k ↦→ cont K1 m | K2 ⟩ where m = E(p)

⟨ resume k; s | E | K2 ⟩ → ⟨ s | E | K1 :: reset m :: K2 ⟩ where cont K1 m = E(k)

⟨ return y | E | reset m :: K ⟩ → ⟨ return y | E | K ⟩

Mutable State
⟨ r = ref y; s | E | K ⟩ → ⟨ s | E, r ↦→ m | ref m E(y) :: K ⟩ where m fresh

⟨x = get r ; s | E | K1 :: ref m v :: K2 ⟩ → ⟨ s | E, x ↦→ v | K1 :: ref m v :: K2 ⟩ where m = E(r)

⟨ set r y; s | E | K1 :: ref m v :: K2 ⟩ → ⟨ s | E | K1 :: ref m E(y) :: K2 ⟩ where m = E(r)

⟨ return y | E | ref m v :: K ⟩ → ⟨ return y | E | K ⟩

Fig. 8. Syntax and stepping relation of theMCode abstract machine.

Similarly, when a marker is on the stack twice, we leave the behavior undefined. It is again the
responsibility of the high-level language to rule out these cases.

3.2 Target Language ASM

Figure 9 defines the syntax of our target language ASM. It abstracts over some details that would be
expected in a low-level representation to focus on describing how we compile continuation capture,
resumption, and mutable state. Words w can be integers, pointers, or null. Registers r map to words,
and we assume an infinite number of virtual registers. Both registers and word literals can serve as
operands o for instructions. Programs P consist of lists of functions f with instructions i. We include
instructions for moving values, performing arithmetic, accessing memory, and executing plain
jumps. We also include while loops and conditional instructions. We do not include a call instruction,
as we use plain jumps for function calls and manage the call stack explicitly. While we do not
include reference counting in our formalization, we add an instruction unique to check whether a
pointer is unique. This allows us to avoid copying continuations for single-shot resumptions.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

260:14 Muhcu, Schuster, Steuwer, and Brachthäuser

Instructions:
P := f : i

i := r = mov o; i
| r = add o o; i
| r = sub o o; i
| r = alloc o; i
| r = load o[o]; i
| store o o[o]; i
| jump o
| while r : i; i
| if r : i; i
| unique r ; i

Operands:
w := 1, 2, f , null, @a5f, ... Words
r := r1, r2, ... Registers
o := w | r Operands

Syntax of Machine States:
M ::= ⟨ i, R, H , P ⟩ Machine state
R ::= { r ⇒ w } Register state
H ::= { w ⇒ B } Heap state
B ::= w Memory block

Stepping Relation:
⟨ r = mov o; i R H ⟩ → ⟨ i r ↦→ V(o), R H ⟩
⟨ r = add o1 o2; i R H ⟩ → ⟨ i r ↦→ V(o1) + V(o2), R H ⟩
⟨ r = sub o1 o2; i R H ⟩ → ⟨ i r ↦→ V(o1) − V(o2), R H ⟩
⟨ r = alloc o; i R H ⟩ → ⟨ i r ↦→ w, R w ↦→ B, H ⟩ w fresh, B = null ×V(o)
⟨ r = load o1 [o2]; i R H ⟩ → ⟨ i r ↦→ B(V(o2)), R H ⟩ w = V(o1) and B = H (w)
⟨store o0 o1 [o2]; i R H ⟩ → ⟨ i R H [w ↦→ B[V(o2) ↦→ V(o0)]] ⟩ w = V(o1) and B = H (w)
⟨jump o R H P ⟩ → ⟨P (f) R H P ⟩ f = V(o)
⟨while r : i0; i R H ⟩ → ⟨ i0; while r : i0; i R H ⟩ if R(r) = true

→ ⟨ i R H ⟩ otherwise
⟨if r : i0; i R H ⟩ → ⟨ i0; i R H ⟩ if R(r) = true

→ ⟨ i R H ⟩ otherwise
⟨ r = unique r0; i R H ⟩ → ⟨ i r ↦→ false, R H ⟩ if R(r0) ∈ H ∪ R \ {r0}

→ ⟨ i r ↦→ true, R H ⟩ otherwise
whereV(o) = R(o) if o is a register, and o otherwise

Fig. 9. Syntax of programs and instructions in ASM, and its semantics in terms of an abstract machine.

Semantics. Figure 9 also defines the small-step operational semantics of our target language
ASM in terms of an abstract machine. The machine state consists of the current instruction i being
executed, the register state R, the heap state H , and the program P . The register state maps registers
to words, the heap state maps words to memory blocks, which are sequences of words, and the
program maps functions to instructions. The semantics of the instructions is as expected. It uses an
auxiliary function V(o) to trivially evaluate operands. We again omit the program P in most steps.

3.3 Compilation
Before giving a formal definition for the compilation ofMCode to ASM, we provide a high-level
intuition for the representation of values and machine configurations in MCode:

• Current call stack.We represent the current runtime stackK of themachine configuration by
a pointer to a meta stack, which is a linked list of stacks, segmented at every delimiter reset m
(also see Figure 1 again). This pointer is kept in a special register msp. In our implementation,
each stack in this linked list is a dynamic array that grows exponentially, and we check for
overflow whenever we push a frame or a reference. In this presentation, however, we assume
that stacks always have enough space. Each stack contains a current memory offset, a pointer
to a prompt, a link to the next element, and a flat list of frames.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

Multiple Resumptions and Local Mutable State, Directly 260:15

J def f (x) = s K ::= f : xi = mov ai ; J s K
J jump f (x) K ::= ai = mov xi ; jump f

J push(y) { x ⇒ s0 }; s K ::= push(y); push(f); J s K
where f : x = mov a1; y = pop(); J s0 K

J return(y) K ::= r = pop(); a1 = mov y; jump r

J c = new(y) { (x) ⇒ s0 }; s K ::= c = alloc (size(y) + 1); store f c[0]; store yi c[i + 1]; J s0 K
where f : yi = load ep[i + 1]; xi = mov ai ; J s K

J call c(y) K ::= r = load c[0]; ep = mov c; ai = mov yi ; jump r

J r = ref y; s K ::= ro = load msp[0]; rp = load msp[1]; push(y); push(popref); J s K
J x = get r ; s K ::= k = load rp [0]; x = load k[ro]; J s K
J set r y; s K ::= k = load rp [0]; store y k[ro]; J s K

J p = reset; s K ::= p = reset(); J s K
J k = shift p; s K ::= k = shift(p); J s K
J resume k; s K ::= if unique(k) : k′ = mov k; else : k′ = copy(k);

revalidate(k′); resume(k′); J s K

Auxiliary Definitions:

push(x) :=
offset = load msp[0]
store x msp[offset]
offset = add offset 1
store offset msp[0]

x = pop() :=
offset = load msp[0]
offset = sub offset 1
x = load msp[offset]
store offset msp[0]

popref :
x = pop();
r = pop();
jump r

underflow :
p = load msp[1]
store null p[0]
msp = load msp[2];
r = pop();
jump r

Fig. 10. Compilation fromMCode to ASM.

• Frames. Each stack frame is represented as a sequence of words corresponding to its en-
vironment and a function pointer f to return to. Reference frames are represented in the
same way, where the environment contains the current state. The last frame of each stack is
a special underflow frame with an empty environment, which returns to the next stack.

• Closures.We represent closures as a function pointer followed by an environment, which in
turn is a sequence of words.

• Continuations. Continuations are represented as a cyclic linked list of stacks, and the handle
for this object points to the last stack of the list. This way, we have fast access to both the
first and last stacks of a continuation.

• Markers. Finally, we represent markers corresponding to prompts as pointers to a memory
cell containing a pointer to a stack, and we represent markers corresponding to references as
a pair of a prompt and an offset.

Figure 10 defines the compilation of statements in MCode to instructions in ASM. We compile
function definitions def f (x) = s to labels with the same name. They first move special argument
registers into the parameter registers and execute the compiled body. Correspondingly, when we
jump with arguments jump f (x), we move them into the argument registers and perform a direct
jump to the function label.
When we push a frame push(y){ x ⇒ s }, we first push each value of the environment and

then push the return address f , which in turn moves the return value, pops the environment, and

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

260:16 Muhcu, Schuster, Steuwer, and Brachthäuser

executes the compiled rest of the statement. When we return, we pop the return address and jump
to it with the return value. We define pushing and popping of words as auxiliary helper functions
in Figure 10. Unlike a normal stack pointer, our meta stack pointer msp does not point directly to
the next free location but to the base of the first element of the meta stack. For multiple consecutive
pushes or pops, we avoid repeated additions, subtractions, loads, and stores.

For new closures new(y){ (x) ⇒ s }, we allocate space, store a function pointer f , and store the
environment as a sequence of words. The function pointer restores this environment from a special
ep register and moves the arguments into parameter registers. When we invoke a closure, we load
the function pointer, move the closure into the ep register, move the arguments into their registers,
and perform an indirect jump to the loaded function pointer.

We represent references with two registers, rp and ro, for a prompt and an offset, respectively. We
allocate a reference r = ref y by recording the stack offset and the current prompt, then pushing
the value y and a function pointer popref that will pop the state upon return.
To get and set the value of a reference, x = get r and set r y, we load the current stack k at

the prompt in rp. We then load respectively store the value on this stack at the offset ro. Indeed,
getting and setting references is constant time, both taking only two instructions. The additional
indirection is required because we support stack-allocated mutable state in presence of multi-shot
continuations. It also allows us to grow stacks by reallocation.
The compilation of delimited control operators is more intricate. We discuss the auxiliary

definitions of reset, shift, resume, and revalidate in the next subsection.

3.4 Delimited Control Operators
Each stack on the meta stack has an associated prompt, representing a marker in MCode. Prompts
stay at a stable address and contain only a single pointer to a stack. We call a stack valid if its
prompt points back to the stack itself. We call a stack invalid if the prompt points to either a
different stack or null. The meta stack only contains valid stacks. This way, we have direct access
to a delimiter without any traversal of the meta stack.

When we resume a continuation, we need to know whether the contained stacks are valid. For
this, we maintain the following invariant: a continuation may only contain any valid stacks if all of
them are valid. This allows us to determine if all stacks in a continuation are valid in constant time.
Moreover, since captured continuations are valid, we achieve constant-time capture and resumption
for one-shot use of continuations.

For multi-shot continuations, we need to copy the stacks. This process creates invalid stacks. If
we want to resume an invalid continuation, we need to revalidate it. We traverse the continuation,
revalidating each stack by updating its prompt. The prompt might already point to a valid stack,
in which case we must invalidate it first. The invalidation process might start in the middle of a
continuation, which is why we represent continuations as cyclic linked lists.

We now describe the compilation of delimited control operators in more detail.

Reset. Figure 11 illustrates the situation before and after a reset. The statement p = reset pushes
a delimiter with a fresh marker m onto the stack K . The reset operation allocates a new prompt
p and a new stack k, which point to each other, and pushes the stack onto the meta stack. In the
stack, we initialize its offset to 4, its associated prompt to p, its next element to msp, and push an
underflow function pointer that will load and return to the next stack. We then store the stack
in prompt p and move it into the meta stack pointer msp. The underflow frame stores null in the
prompt, loads the next stack, and returns to it.

Shift & Resume. Figure 12 illustrates both shift and resume, as the two are inverses of each other.
Whereas the statement k = shift m captures the part of the meta stack up to delimiter m as

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

Multiple Resumptions and Local Mutable State, Directly 260:17

msp
...

msp

underflow

fresh

𝑝

...

p = reset() :=
p = alloc 1
k = alloc enough
store 4 k[0]
store p k[1]
store msp k[2]
store underflow k[3]
store k p[0]
msp = mov k

reset

Fig. 11. Reset creates a fresh stack and a fresh prompt, links them, and pushes them onto the meta stack.

msp

𝑝

... ...

𝑝 𝑘

...
msp

...

sh
ift

resum
e

k = shift(p) :=
k = load p[0]
k′ = load k[2]
store msp k[2]
msp = mov k′

resume(k) :=
k′ = load k[2]
store msp k[2]
msp = mov k′

Fig. 12. Shift and resume only amounts to switching two pointers.

a continuation k, the statement resume k pushes a continuation k back onto the meta stack.
Operation shift captures the current continuation by cutting the meta stack at prompt p, sets
the meta stack pointer to the next stack k′, and returns the captured continuation k. The resume
operation assumes that k is a unique reference to a valid continuation and pushes it back onto the
meta stack. It first updates the meta stack pointer to the first stack k′ in the continuation and then
points the last stack k to the previous meta stack pointer.

Copying Continuations. The code presented so far works, as long as every continuation is resumed
at most once. However, we support (non-reentrant) multi-shot continuations and local mutable
references, which we explain next. In many programs, we are on the fast path presented so far,
after a quick check for unique ownership and validity. When we attempt to resume a continuation
that we do not uniquely own, we create a copy that we do uniquely own.
Figure 13 depicts the situation before and after creating a copy k′0 of continuation k0. We copy

the memory of each stack in k0. We traverse the linked list until we find the end, which is marked
by pointing back to the head k0. We also mark the end of k′0 to point back to its head. The copy
is invalid. Since we very often resume the copy afterwards, as a micro-optimization, we could
revalidate it (explained in the next subsection) while creating the copy.

Revalidate & Invalidate. Before we resume a continuation, we must check its validity and potentially
revalidate it. We maintain the invariant that if an element of a continuation is valid, then the rest is
valid as well. This means that for valid continuations, we only need to check the first element for
validity and can resume immediately without traversing the continuation. However, if the stacks

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

260:18 Muhcu, Schuster, Steuwer, and Brachthäuser

𝑘0

...

𝑘′0...

k′0 = copy(k0) :=
k′0 = alloc enough
size = load k0 [0]
memcpy k′0 k0 size
s′ = mov k′0
k = load k0 [2]
while (k ≠ k0) :

k′ = alloc enough
size = load k[0]
memcpy k′ k size
store k′ s′ [2]
s′ = mov k′

k = load k[2]
store k′0 k′ [2]

co
py

Fig. 13. Copying a continuation k (greyed out, since it remains unchanged) results in a deep copy of each
stack with invalid prompt pointers. That is, the prompt does not point back to the copy of the stack.

of the continuation are invalid, we traverse the continuation and, for each stack, point its prompt
back to that stack. Figure 14 depicts the situation before and after revalidation. To maintain the
aforementioned invariant, we also invalidate the continuation it previously pointed to. Figure 14
also depicts the situation before and after invalidation. To invalidate a continuation, we traverse all
elements and make their associated prompts point to null, a special pointer that is not equal to any
other one. This way, any validity check for any element will fail, and we will eventually have to
revalidate the continuation, setting the prompts to point back to these stacks.

Time Complexity. In cases where continuations are unique and resumed only once, shift and
resume are constant-time operations. They do not traverse the continuation and execute only a
handful of instructions. In this case, stacks always remain valid, as invalid stacks are only introduced
by copying continuations or resuming copies, which only occurs if they are used multiple times.

When continuations are resumed multiple times, our implementation introduces an overhead lin-
ear in the number of captured frames, since we must create a copy of each stack in the continuation.
We believe that this overhead is unavoidable to ensure the correct semantics of multi-shot delimited
control in the presence of stack-allocated mutable references. The revalidation of continuations is
linear1 in the number of stacks in the continuation but is only necessary when invalid stacks are
present, in which case there is already a linear overhead from copying continuations.

Due to our requirement of validity, we can access any given marker on the meta stack in constant
time, which is important for the implementation of local mutable references. We can allocate state
directly on the stack and have constant-time access to it while maintaining the correct backtracking
behavior in the presence of multiple resumptions. Whenever we copy a continuation, any mutable
state that it captured is naturally copied as well. There is still some overhead from the indirection
through the prompt and the offset. However, with direct pointers to mutable state, we would lose
position independence of stacks, which would make resuming from a handler more costly.

1The revalidation of continuations with n stacks might invalidate n other continuations, but since this is a delayed
invalidation, we still have linear amortized time complexity.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

Multiple Resumptions and Local Mutable State, Directly 260:19

𝑘0𝑘0

...

𝑠1 𝑠𝑛

𝑘0

...

𝑘0
null null

𝑘0

...

re
va
lid

at
e

in
va
lid

at
e

revalidate(k0) :=
k = mov k0
p = load k[1]
s = load p[0]
while (k ≠ s) :

if (s ≠ null) :
invalidate(s)

store k p[0]
k = load k[2]
p = load k[1]
s = load p[0]

invalidate(k0) :=
k = mov k0
p = load k[1]
s = load p[0]
while (k == s) :

store null p[0]
k = load k[2]
p = load k[1]
s = load p[0]

Fig. 14. To revalidate a continuation, we traverse all prompts and point them to the respective stack. Since
the prompts potentially pointed to another stack si , we additionally need to invalidate it before. Invalidation
traverses a continuation and sets the prompts to null.

4 Implementation
To evaluate the practical feasibility of our compilation presented in Section 3, we implemented it in
the existing compiler for Effekt [Brachthäuser et al. 2020]. In addition to lexical effect handlers, the
language Effekt features algebraic data types, interface types, a standard library with immutable
and mutable data structures, common effects and handlers, several medium-sized case studies, and
an extensive test suite. The compiler supports multiple backends for the same source language, with
a shared intermediate representation. It performs various high-level optimizations on this shared
intermediate representation, such as eliminating continuation capture in tail-resumptive handlers.
From the shared intermediate representation, we generate code in an intermediate language similar
toMCode, which we then compile to LLVM intermediate code, closely following the compilation
to ASM described in Section 3.3. We have a runtime system that we wrote directly in LLVM’s
intermediate representation, containing functions to manage the meta stack. The runtime system
code is compiled by LLVM together with the generated code to enable further optimizations.

4.1 Differences to the Formalization
Our presentation ofMCode in Section 3 is for a simplified subset of the intermediate representation
that we have actually implemented. Minor differences are the addition of algebraic data types and
the generalization of closures to objects with multiple methods. We now explain larger differences.

Reference Counting. Our runtime system uses garbage-free reference counting [Reinking et al. 2021]
to manage memory. Each heap-allocated value has a reference counter at its base. Whenever a

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

260:20 Muhcu, Schuster, Steuwer, and Brachthäuser

value is used multiple times within a scope, we share it by incrementing its reference count. We
erase a reference when it is used for the last time in a scope, rather than at the end of a scope, by
decrementing its reference count and freeing it when it drops to zero. This ensures that every value is
freed as soon as it is no longer needed. We pass around capabilities that, in turn, close over prompts
and references to access parts of the meta stack. Due to the effect safety of our source language, we
can assume that prompts outlive any capabilities and references that use them. Therefore, they only
have weak references to prompts, and sharing them does not increase their reference count, nor
does erasing them decrease it. We only count the number of stacks that reference a prompt. Stack
frames have associated sharer and eraser functions, which are called when a stack is copied or
freed. These functions are responsible for incrementing and decrementing the reference counters
of the values in the stack frames. Therefore, in our implementation, exceptions must traverse the
stack to free it, taking time linear in the number of frames. Heap objects, specifically closures, also
have an associated eraser function, which is called when a closure is freed to traverse and erase its
environment.

Stack Growth. In our implementation, whenever we push something onto a stack, we check if there
is enough space left. If not, we reallocate the stack. This is a linear-time operation, but we amortize
it to be constant-time by doubling the size of the stack each time. This is, in addition to copying
continuations, another reason why references to stacks need the indirection through prompts.

Regions. Effekt features regions into which we dynamically allocate mutable references. Regions
introduce a new scope, and memory allocated within a region is freed when the region is exited. This
is useful for creating local mutable references that may outlive the current scope. Our motivating
example from Section 2 (left) can be equivalently expressed in the following way (middle).

Mutable variables

var i = 0;

checkpointing {

var s = 0;

...

}

Regions in Effekt

region outer {

checkpointing {

region inner {

var i in outer = 0;

var s in inner = 0;

... } } }

Regions in MCode

allocate(r, v) :=
k = shift r ;
x = ref v;
resume k;
return x

The region r { ... } construct binds the name r for a freshly created region in the delimited body.
Inside, we allocate a mutable reference x in region r with initial value v using var x in r = v.
Neither the regions nor the references shall escape, and the type system of Effekt ensures this.
Regions do not appear inMCode but are desugared to a combination of prompts and references.
The region statement desugars to a reset, and the region r is the freshly created prompt. To
allocate a value v into region r, we define the following code above (right column). Getting and
setting the value of a reference allocated in a region is the same as with ordinary references and
takes constant time, regardless of how far away the region is on the meta stack.

Bidirectional handlers. Effekt features bidirectional handlers [Zhang et al. 2020], which allow for
resumption with a computation instead of a value. For example, we can declare that the await
operation might raise a retry exception when used. The handler for await now can resume by
raising retry at the use-site.

effect await(): Result / retry resume { do retry() } resume k; call retry()

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

Multiple Resumptions and Local Mutable State, Directly 260:21

X X XXX X

10

1

1/10

1/100

1/1000

Countdown
(200M)

Fibonacci
(42)

Iterator
(40M)

Generator
(25)

Triples
(300)

Resume Non-tail
(10k)

Checkpointing
(10k)

Geomean
(without

 Countdown)
Product Early

(100k)
N Queens

(12)
Tree Explore

(16)
Parsing

(20k)
Handler Sieve

(60k)
Benchmarks

R
el

at
iv

e
Pe

rf
or

m
an

ce
 F

ac
to

r Effekt MLton Lexa OCaml Koka Eff

Fig. 15. Performance of Effekt compared with other implementations, normalized to Effekt. Bars that go
down show slower performance than Effekt. Bars that go up show faster performance than Effekt. The y-axis
is in log scale. Benchmarks that did not run are marked with an X.

The implementation of this feature is a natural desugaring to capability passing and resuming with
a statement. Effekt supports a variation of scoped effects in a similar way.

Asynchronous input and output. Effekt features lightweight cooperative concurrent tasks and
asynchronous input and output using the libuv [2025] library. Input and output operations are
written in direct style with no additional annotation. For example, we can spawn a task that runs
concurrently and sleeps without blocking the main thread.

spawn(box { println("task: hello"); sleep(2); println("task: world") });

println("program: hello"); sleep(1); println("program: world")

Spawning a new task amounts to allocating a new tiny meta stack on which it runs. Stacks grow
as required. Suspending the current computation amounts to an ordinary function call, since the
meta stack contains all information we need to resume. The type system of Effekt prevents effects,
including exceptions and mutable references, from affecting the context outside of the current task.

5 Performance Evaluation
To evaluate the performance of our implementation, we conducted a number of experiments.
Foremost, we are interested in the performance cost of supporting multiple resumptions and local
mutable state. Since we generalize the approach of Ma et al. [2024], we are particularly interested
in determining whether we can achieve the same high levels of performance while implementing
a more general language that can express a broader range of programs. We also compare our
approach to other implementations of both lexical and dynamic effect handlers. Finally, we aim to
confirm that our implementation resolves the undesired non-linear scaling properties of deeply
nested effect handlers in previous implementations of Effekt, as identified by Ma et al. [2024].

Performance Comparison with Lexical and Dynamic Effect Handler Implementations. We compare
our new Effekt implementation (version 0.22.0) against five other implementations: Effekt MLton
(version 0.2.2) is a now-discontinued MLton backend that compiled effect handlers to iterated
continuation-passing style [Müller et al. 2023]. This backend did not support the full set of Effekt’s
features and could not compile all benchmarks. Together with Lexa [Ma et al. 2024], both implement
lexical effect handlers. Moreover, we compare with OCaml (version 5.1.1) [Sivaramakrishnan et al.
2021], Koka (version 3.1.2) [Leijen 2017b], and Eff (version 5.1) [Plotkin and Pretnar 2013], which all

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

260:22 Muhcu, Schuster, Steuwer, and Brachthäuser

Indirect Ref. Direct Ref.
Without Opt. 110.3 (± 1.9) ms 88.4 (± 3.2) ms
With Opt. 43.6 (± 1.1) ms 21.8 (± 0.9) ms

main :
x = ref 100000000;
push i ⇒ () ;
jump loop(x)

loop(x) :
i = get x;
if (i == 0) :
return i

else :
set x (i − 1);
jump loop(x)

Fig. 16. Runtime of accessing mutable state in a tight loop. We compare indirect references (as presented in
this paper) with using direct references in this benchmark, both with and without LLVM optimizations.

implement dynamic effect handlers. We use a community maintained benchmark suite designed
specifically for languages with effect handlers, covering a wide range of use cases [Hillerström
et al. 2023]. In addition, we include the Checkpointing example from Section 2. It requires support
for multiple resumptions and local mutable state, which Lexa and OCaml lack. Unfortunately,
while Eff would support this example, its compiler crashes with an internal error. We measured
the benchmarks on a machine with a 16-core AMD Ryzen 7 PRO 7840U processor and 64 GB of
RAM. We performed each experiment at least 10 times and report median runtimes. We submit the
benchmarked code and our raw results as supplementary material.

Figure 15 shows the performance of each implementation normalized to our new Effekt backend.
Bars that go down show worse performance compared to Effekt. Bars that go up show a better
performance. Benchmarks that could not be run are marked with a colored X. The figure shows
that Effekt indeed performs well compared to the other implementations, particularly the ones
implementing dynamic effect handlers. The geometric mean on the right, shows that we perform
significantly better than OCaml (2.2x faster), Eff (3.2x), and Koka (10.2x). The benchmarks that
use multiple resumptions in OCaml use a third-party library to manually clone continuations.
The benchmarks that use mutable state in Eff do so purely with effect handlers and do not use
mutable references. Our implementation shows competitive performance to the prior backend Effekt
MLton and Lexa which are about 1.25x and 1.29x faster. Lexa is not able to run the Checkpointing
benchmark as it requires multiple resumptions in a handler that is not the closest one. Our
implementation enables some aggressive optimizations that sometimes provide significant benefits.
For example, the Countdown benchmark is largely evaluated at compile time and the Iterator,
Parsing, and Handler Sieve benchmarks benefit from Effekt’s tail resumption optimization and
from the direct fast access to local mutable references. As the optimizations for Countdown are a
clear outlier, we have excluded this benchmark from the geometric mean reported above. We do not
perform well on Product Early, as for exceptions we have to erase the continuation in linear time.
Lexa, performs significantly better on the Iterator benchmark where we believe to pay an overhead
due to our prompt indirection. For Fibonacci we believe the reason for the worse performance is
our custom calling convention and stack management which LLVM is not able to optimize.

Overhead of the indirection in local mutable references. We access local mutable references through
an indirection via a prompt and an offset. This introduces overhead compared to having a direct
pointer to the state. We chose this implementation strategy to support multiple resumptions. To
evaluate the overhead, we modified our runtime system to use direct pointers instead. This imple-
mentation does not support multiple resumptions anymore. Therefore, we do not run benchmarks
with multi-shot handlers, and increase the initial stack size, so it does not need to be reallocated.
When comparing this modified implementation to the presented implementation, we did not ob-
serve a significant overhead with performance differences below 2%. We inspected benchmarks

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

Multiple Resumptions and Local Mutable State, Directly 260:23

which make use of local state, such as Countdown, and observed that in both versions the optimizer
removes most memory operations at compile time. When we turned optimizations off, we observed
that the overall runtime was much higher and that both versions showed still almost identical
performance, as now the memory operations are insignificant compared to the rest of the program.

To get an estimate for an upper bound on the overhead, we manually translated the example of
Figure 16 inMCode to LLVM IR, and measured its performance with and without the indirection for
local mutable references. We compiled the programwith and without optimizations, and marked the
relevant state accesses with volatile to prevent them from being optimized away. Figure 16 shows
the result for these programs. The overhead of the indirection is about 1.2x for unoptimized and
about 1.9x for optimized code. An interesting observation is that the absolute difference between
the two implementations is the same for both and reproducible with varying iteration counts. As
expected, the worst case slowdown for the additional indirection is roughly a factor of two.

0 1000 2000 3000

Input size

0.00

0.05

0.10

0.15

0.20

Lexa

without Tick
with Tick

0 1000 2000 3000

Input size

0

500

1000

1500

2000

Effekt (JS)

without Tick
with Tick

0 1000 2000 3000

Input size

0.0

0.1

0.2

0.3

0.4

0.5

Effekt (LLVM)

without Tick
with Tick

Ru
nn

in
g
tim

e
(s
)

1Fig. 17. Scaling behavior of deeply nested effect handlers in the prior JavaScript and new LLVM backends.
The benchmarks install an unbounded number of nested handlers and the handler for the Tick effect is below
all of them. (The MLton backend could not compile this benchmark due to effect-polymorphic recursion.)

Scaling of nested effect handlers. Ma et al. [2024] reported a non-linear scaling behavior in Effekt’s
JavaScript backend when using nested effect handlers due to the search for the handler. Figure 17
confirms that our new implementation fixes this undesired scaling behavior.

6 Limitation: Continuations are not Reentrant
While the approach presented in this paper supports resuming the continuation multiple times
sequentially, we do not support resuming the same continuation concurrently. That is, our continu-
ations are not reentrant. This is illustrated by the following examples.

Supported (Effekt)

resume(());

resume(())

Supported (MCode)

push(k) { () ⇒
resume k;
return () }

resume k;
return ()

Not Supported (Effekt)

resume {

resume { () }

}

Not Supported (MCode)

resume k;
resume k;
return ()

The left two columns show examples where we resume a second time after finishing resuming for
the first time. The right two columns show the situation where we try to resume, while another
copy of the continuation is still on the meta stack. To admit constant-time lookup, prompts always
point back to at most one active copy of the stack—having two copies on the stack simultaneously
would violate this invariant. In fact, this is a limitation of MCode. Reentrant continuations lead to
repeated markers on the stack, which exhibit undefined behavior for the shift, get and set operations.
In our implementation, we detect this situation at runtime and abort the program.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

260:24 Muhcu, Schuster, Steuwer, and Brachthäuser

While it is very easy to construct a situation like above in MCode, reproducing it in a source
language requires at least one of the following features:

First-class functions. With first-class functions (added to Effekt by Brachthäuser et al. [2022]), it
is possible to resume with a thunk that will resume again, as illustrated in the following example.

effect thunk(): () ⇒ Unit at {} try { do thunk()() }

with thunk {

resume(box { resume(box { () }) }) }

Bidirectional effects. A very similar situation can be achieved by means of bidirectional ef-
fects [Zhang et al. 2020], that is, when effect operations can use effects on their own.

effect yield(): Unit try { do thunk() }

effect thunk(): Unit / yield with thunk { resume { resume { do yield() } } }

with yield { resume(()) }

Parallelism. If a language supports parallel execution, which Effekt currently does not, it would
be possible to resume twice at the same time, as in the following example.

effect fork(): Bool try { println(do fork()) }

with fork {

spawn(box { resume(true) })

resume(false) }

The meta stack is a linked list ending in a null pointer, while the pointers in captured continuations
form cycles. Before resuming a shared continuation, we create a copy and invalidate the currently
valid copy. On a reentrant resumption, that copy is already part of the meta stack. This means that
we encounter a null pointer during invalidation, which we detect and abort the program.

In general, it might be possible to devise a type system to statically prevent this situation. This
would amount to tracking the resumption on the type-level in order to prevent resuming it in a
scope where it is already being resumed. In Effekt, resumptions are transparent, this means the type
checker annotates them with the capabilities they close over. In the first example of this section,
this means the continuation is indistinguishable from a pure function of type () ⇒ Unit at {}.
This makes it difficult to statically detect reentry without loss of expressivity.

All Effekt backends, prior to our implementation, supported reentrant resumptions. However,
using our approach to execute about 25.000 lines of Effekt code, heavily using effects and also
multiple resumptions, we encountered not a single reentrancy error. A reason could be that first-
class functions and bidirectional effects have been retroactively added to the language and are
thus used less frequently. While existing programs do not seem to rely on reentrancy, there are,
of course, valid use cases of reentrant resumptions, which at the moment lead to a runtime error.
These runtime errors might be particularly suprising for users of a library, who are not aware that
the library is implemented in terms of effect handlers. In the future, it thus appears important to
investigate runtime support for reentrancy or rule it out statically by means of a type system.

7 Related Work
We presented a compiler and runtime system for lexical effect handlers that support multi-shot
continuations and stack-allocated state. We express lexical effect handlers in terms of delimited
control operators for capturing the continuation up to a prompt and resuming it later [Gunter

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

Multiple Resumptions and Local Mutable State, Directly 260:25

et al. 1995] In this section, we compare with other runtime systems supporting classical control
operators or effect handlers. Finally, we discuss local mutable references and reallocation of stacks.

7.1 Runtime Support for Control Operators
Undelimited Continuations. Hieb et al. [1990] present an efficient implementation of call/cc, a
control operator that captures the undelimited continuation. They introduce segmented stacks, a
technique to enable a dynamically growing call stack without moving too much data. While our
meta stack might look like a segmented stack, its purpose is different as it enables fast capturing
of delimited continuations. Our stack growth strategy is an orthogonal decision: we reallocate
stacks. Bruggeman et al. [1996] observe that many continuations are invoked only once and extend
a runtime system based on segmented stacks with special support for undelimited one-shot con-
tinuations, which avoid the copying overhead of multi-shot continuations. They offer a control
operator call/1cc to the programmer that captures a one-shot continuation, and it is an error
to resume it more than once. In contrast, we inspect the reference count at runtime to detect if
we are resuming for the last time and avoid copying in this case. Clinger et al. [1999] present a
comprehensive survey and comparison of different implementation techniques for undelimited
continuations. They measure instruction counts and discuss indirect, non-measurable costs. Simi-
larly, more recently, Farvardin and Reppy [2020] present a comprehensive survey and comparison
of different implementation techniques for one-shot continuations that have stack extent with the
control operator call/ec. Both conclude with a list of trade-offs one must consider, which we took
into account during development.
Delimited Continuations. Gasbichler and Sperber [2002] present a direct implementation of

delimited control operators reset and shift for Scheme, with improved performance over the
encoding via undelimited control. When capturing the continuation, they search for the closest
delimiter, which takes time linear in the number of frames. They support multiple resumptions
by copying incrementally between the heap and the stack. Masuko and Asai [2009] present a
compiler and runtime system for delimited control operators reset and shift for the MinCaml
language. They present one implementation that eagerly copies frames upon continuation capture,
which takes time linear in the number of frames, and one implementation that does so lazily. This
variant still takes time linear in the number of frames upon resumption, but is optimized to take
constant time in case of tail resumption. They support multiple resumptions but do not discuss
stack-allocated state. Kiselyov [2012] presents an implementation of multi-prompt delimited control
for the OCaml bytecode interpreter as a library using low-level instructions. He uses exception
handler frames as markers and copies parts of the stack when a continuation is captured, which
takes time linear in the number of frames. He supports multiple resumptions but does not discuss
stack-allocated state. Pham and Odersky [2024] extend the compiler and runtime system of Scala
Native with operators for multi-prompt delimited control. They keep a linked list of active handlers
in a thread-local variable. They move frames out of the stack into a continuation object and copy
them back upon resumption, which takes time linear in the number of frames. They choose not to
support multiple resumptions to avoid violating resource constraints.

7.2 Runtime Support for Effect Handlers
Dynamic Effect Handlers. Hillerström et al. [2017] present a continuation-passing translation
for dynamic effect handlers. At runtime, they pass a linked list of pairs of continuations and
handlers. When performing an effect operation, they search this linked list for a matching handler,
accumulating a linked list in reverse order, which they replay upon resumption. All these operations
take time linear in the number of handlers. They fully support multiple resumptions. Xie and Leijen
[2021] implement dynamic effect handlers using generalized evidence passing and runtime support

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

260:26 Muhcu, Schuster, Steuwer, and Brachthäuser

for multi-prompt delimited control. When invoking an effect operation, they look up the handler
implementation in an evidence vector that is passed to each function. This allows tail-resumptive
operations to avoid capturing the continuation, but due to the nature of dynamic effect handlers, it
requires special frames to correctly resolve effect operations in those cases. Capturing continuations
searches for a matching prompt and is linear in the number of handlers. They fully support multiple
resumptions. Sivaramakrishnan et al. [2021] present the design and implementation of dynamic
effect handlers for OCaml, an industrial-strength functional programming language, maintaining
backwards compatibility and the performance of existing programs. Like us, they represent the
meta stack as a linked list of stacks and grow stacks by reallocation. Searching for a matching
handler is linear in the number of handlers. They make the pragmatic choice of supporting only
one-shot continuations. A third-party library implements cloning of continuations but warns
about surprising behavior due to the compiler’s heap-to-stack conversion of mutable references.
Phipps-Costin et al. [2023] extend WebAssembly, a low-level portable code format, with dynamic
effect handlers. They provide a formal specification, an extension to the reference interpreter, and
a prototype extension of a production-grade interpreter. They too make the pragmatic choice
to support only one-shot continuations. Like us, they keep a linked list of stacks that supports
lightweight stack switching. Searching for a matching handler is linear in the number of handlers.
Interestingly, they have specified an additional resume_throw instruction to resume with an
exception. Both resuming with a value and resuming with an exception are subsumed by our
ability to resume with an arbitrary computation. Alvarez-Picallo et al. [2024] present a C library for
dynamic effect handlers based on mutable coroutines. Naturally, this implementation only permits
one-shot continuations, again a pragmatic choice. They keep a linked list of active coroutines,
analogous to our meta stack. Instead of reallocation, they use either segmented stacks or fixed-size
stacks. Searching for a matching handler is linear in the number of handlers.

Lexical Effect Handlers. Brachthäuser et al. [2018] present a Java library for lexical effect handlers
in capability-passing style. They build upon multi-prompt delimited control and, following Dybvig
et al. [2007], represent the meta stack as a linked list of stacks, where each stack is a linked
list of frames. They instrument JVM bytecode to update this meta stack when pushing a frame.
Interestingly, they too provide a method unwindWith to resume with an exception, which is
subsumed by our ability to resume with an arbitrary computation. Because they employ explicit
capability passing, handler implementations are immediately available when an effect operation is
used. However, capturing continuations takes time linear in the number of handlers. Ghica et al.
[2022] present a C++ library for lexical effect handlers, using an existing library for suspending
and resuming runtime stacks. They only support one-shot continuations, again a pragmatic choice.
They generate a fresh label for each handler instance at runtime, implementing lexical handlers.
Their meta stack is a linked list of stacks, each corresponding to a handler and search for a matching
handler, takes time linear in the number of handlers. Ma et al. [2024] present a language with
lexical effect handlers and constant-time continuation capture and resumption. Their language,
Lexa, is compiled to C and uses the C stack and the System V calling convention. To implement
effect handlers, they use a library with inline assembly for switching between stacks. Similar to
our approach, they use a linked list of stacks to support delimited control operators. In Lexa, effect
handlers are stored at the stack where they are introduced, and effectful functions receive a direct
pointer to that stack as an additional parameter. Since Lexa uses direct pointers to stacks, stacks
remain position dependent, which prohibits multi-shot resumptions from capturing any additional
handler. Our work is based on theirs, but we support non-reentrant multi-shot continuations in the
presence of stack-allocated state while keeping constant-time capture and resume for the one-shot
case.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

Multiple Resumptions and Local Mutable State, Directly 260:27

7.3 Runtime Support for Local Mutable References
The Go programming language features lightweight threads, represented as separate stacks. These
are allocated with a small initial size and grow on demand. Starting with version 1.3, the implemen-
tation changed from using segmented stacks to using reallocation2. Growing stacks by reallocation
requires adjusting all pointers into the old stack to point into the new stack, which the Go runtime
does for pointers from the stack into the stack. It prevents pointers from the heap into the stack by
allocating the memory for those references that might escape on the heap. Likewise, the runtime
system of OCaml [Sivaramakrishnan et al. 2021] grows stacks by reallocation. Its runtime system
keeps a chain of exception handlers that are allocated on the stack. These pointers are traversed and
adjusted upon reallocation. Moreover, the compiler sometimes performs an optimization to allocate
mutable references on the stack instead of on the heap, which is only valid under the assumption
that resumptions are one-shot [de Vilhena and Pottier 2021]. This assumption is only violated by
third-party libraries for multi-shot continuations. The Effekt programming language [Brachthäuser
et al. 2020] originally was introduced with second-class functions only: they can be passed but not
returned nor stored. This restriction would enable an implementation where all handlers and all
functions are allocated on the stack, which in turn would enable a runtime system that supports
multi-shot resumptions and local mutable references by adjusting pointers upon reallocation. This
implementation technique would in turn avoid the indirection for local mutable references while
also supporting reentrant resumptions. A practical exploration of this alternative implementation
technique is interesting future work. The current version of Effekt, however, does feature first-class
functions [Brachthäuser et al. 2022]. These require the allocation of closures on the heap and
consequently the existence of pointers from the heap into the stack. Other implementations of
Effekt use a translation to iterated continuation-passing style [Müller et al. 2023], translating local
mutable references to state passing, or use a runtime systemwhich saves all local mutable references
upon continuation capture and restores them upon resumption. Runtime systems of the Scheme
programming language support continuation marks [Flatt et al. 2019, 2007]. They conceptually
are dynamically bound maps from keys to values. The implementation in Chez Scheme [Flatt
and Dybvig 2020] uses a dedicated mark register for a linked list of continuation marks. Access
to these takes amortized constant time by caching the values of recently-used keys. Resuming a
continuation creates a copy of it, which the runtime system sometimes avoids by detecting one-shot
usage.

8 Conclusion
We presented a compiler and runtime system for lexical effect handlers that supports multi-shot
continuations and local mutable references. Our approach builds on the work of Ma et al. [2024]
and extends it to support multiple resumptions and additionally supports local mutable references.
We achieve this by using garbage-free reference counting and a carefully designed runtime system
that allows for constant-time continuation capture and resumption in the common one-shot case.
Our evaluation demonstrates that our approach is feasible and that the implementation performs
competitively with state-of-the-art systems for effect handlers, and in many cases, outperforms
them. Moreover, our approach eliminates the undesired scaling properties of deeply nested effect
handlers that were demonstrated by Ma et al. [2024]. Our results refute the common belief that
multiple resumptions are incompatible with efficient stack-switching implementations, showing
that efficiency does not need to come at the cost of expressivity.

2https://go.dev/doc/go1.3#stacks

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

260:28 Muhcu, Schuster, Steuwer, and Brachthäuser

Acknowledgments
We would like to thank the reviewers for their constructive feedback, which has significantly
helped us improve our work. We also gratefully acknowledge Jonathan Frech, Marvin Borner,
and Mattis Böckle for their contributions to the LLVM backend implementation of Effekt in their
roles as student compiler engineers. The work on this project was supported by the Deutsche
Forschungsgemeinschaft (DFG – German Research Foundation) – project number DFG-448316946.

References
Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley. 2024. Effect Handlers for C via Coroutines. Proc.

ACM Program. Lang. 8, OOPSLA2, Article 358 (Oct. 2024), 28 pages. doi:10.1145/3689798
Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Abstracting Algebraic Effects. Proc. ACM

Program. Lang. 3, POPL, Article 6 (Jan. 2019), 28 pages.
Jonathan Immanuel Brachthäuser. 2024. Optimize tailresumptive handlers. https://github.com/effekt-lang/effekt/pull/674.

PR #674.
Jonathan Immanuel Brachthäuser, Philipp Schuster, Edward Lee, and Aleksander Boruch-Gruszecki. 2022. Effects, Capabili-

ties, and Boxes: From Scope-Based Reasoning to Type-Based Reasoning and Back. Proc. ACM Program. Lang. 6, OOPSLA,
Article 76 (apr 2022), 30 pages. doi:10.1145/3527320

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2018. Effect Handlers for the Masses. Proc. ACM
Program. Lang. 2, OOPSLA, Article 111 (Oct. 2018), 27 pages. doi:10.1145/3276481

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as Capabilities: Effect Handlers and
Lightweight Effect Polymorphism. Proc. ACM Program. Lang. 4, OOPSLA, Article 126 (Nov. 2020). doi:10.1145/3428194

Jonathan Immanuel Brachthäuser and Daan Leijen. 2019. Programming with Implicit Values, Functions, and Control. Technical
Report MSR-TR-2019-7. Microsoft Research.

Carl Bruggeman, Oscar Waddell, and R. Kent Dybvig. 1996. Representing Control in the Presence of One-Shot Continuations.
In Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language Design and Implementation (Philadelphia,
Pennsylvania, USA) (PLDI ’96). Association for Computing Machinery, New York, NY, USA, 99–107. doi:10.1145/231379.
231395

William D Clinger, Anne H Hartheimer, and Eric M Ost. 1999. Implementation strategies for first-class continuations.
Higher-Order and Symbolic Computation 12 (1999), 7–45.

Paulo Emílio de Vilhena and François Pottier. 2021. A Separation Logic for Effect Handlers. Proc. ACM Program. Lang. 5,
POPL, Article 33 (jan 2021), 28 pages. doi:10.1145/3434314

R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry. 2007. A Monadic Framework for Delimited Continuations. Journal of
Functional Programming 17, 6 (Nov. 2007), 687–730. doi:10.1017/S0956796807006259

Kavon Farvardin and John Reppy. 2020. From Folklore to Fact: Comparing Implementations of Stacks and Continuations. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK)
(PLDI 2020). Association for Computing Machinery, New York, NY, USA, 75–90. doi:10.1145/3385412.3385994

Matthew Flatt, Caner Derici, R. Kent Dybvig, Andrew W. Keep, Gustavo E. Massaccesi, Sarah Spall, Sam Tobin-Hochstadt,
and Jon Zeppieri. 2019. Rebuilding Racket on Chez Scheme (Experience Report). Proc. ACM Program. Lang. 3, ICFP,
Article 78 (July 2019), 15 pages. doi:10.1145/3341642

Matthew Flatt and R. Kent Dybvig. 2020. Compiler and Runtime Support for Continuation Marks. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020). Association
for Computing Machinery, New York, NY, USA, 45–58. doi:10.1145/3385412.3385981

Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias Felleisen. 2007. Adding Delimited and Composable Control
to a Production Programming Environment. In Proceedings of the International Conference on Functional Programming
(Freiburg, Germany). Association for Computing Machinery, New York, NY, USA, 165–176. doi:10.1145/1291151.1291178

Daniel P. Friedman, Christopher T. Haynes, and Eugene Kohlbecker. 1984. Programming with Continuations. In Program
Transformation and Programming Environments, Peter Pepper (Ed.). Springer-Verlag, Berlin, Heidelberg.

Martin Gasbichler and Michael Sperber. 2002. Final Shift for Call/Cc: Direct Implementation of Shift and Reset. In Proceedings
of the International Conference on Functional Programming (Pittsburgh, PA, USA). ACM, New York, NY, USA, 271–282.

Dan Ghica, Sam Lindley, Marcos Maroñas Bravo, and Maciej Piróg. 2022. High-level effect handlers in C++. Proc. ACM
Program. Lang. 6, OOPSLA2, Article 183 (Oct. 2022), 29 pages. doi:10.1145/3563445

Oliver Goldstein and Ohad Kammar. 2024. Modular probabilistic programming with algebraic effects (MSc Thesis 2019).
arXiv:2412.19826 [cs.PL] https://arxiv.org/abs/2412.19826

Carl A. Gunter, Didier Rémy, and Jon G. Riecke. 1995. A Generalization of Exceptions and Control in ML-like Languages.
In Proceedings of the Conference on Functional Programming Languages and Computer Architecture (La Jolla, California,

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

https://doi.org/10.1145/3689798
https://github.com/effekt-lang/effekt/pull/674
https://doi.org/10.1145/3527320
https://doi.org/10.1145/3276481
https://doi.org/10.1145/3428194
https://doi.org/10.1145/231379.231395
https://doi.org/10.1145/231379.231395
https://doi.org/10.1145/3434314
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1145/3385412.3385994
https://doi.org/10.1145/3341642
https://doi.org/10.1145/3385412.3385981
https://doi.org/10.1145/1291151.1291178
https://doi.org/10.1145/3563445
https://arxiv.org/abs/2412.19826
https://arxiv.org/abs/2412.19826

Multiple Resumptions and Local Mutable State, Directly 260:29

USA). ACM, New York, NY, USA, 12–23.
Christopher T Haynes. 1987. Logic continuations. The Journal of Logic Programming 4, 2 (1987), 157–176.
Robert Hieb and R. Kent Dybvig. 1990. Continuations and Concurrency. In Proceedings of the Second ACM SIGPLAN

Symposium on Principles & Practice of Parallel Programming (Seattle, Washington, USA) (PPOPP ’90). ACM, New York,
NY, USA, 128–136.

Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. 1990. Representing Control in the Presence of First-class Continuations.
In Proceedings of the Conference on Programming Language Design and Implementation (White Plains, New York, USA).
ACM, New York, NY, USA, 66–77.

Daniel Hillerström, Sam Lindley, Bob Atkey, and KC Sivaramakrishnan. 2017. Continuation Passing Style for Effect Handlers.
In Formal Structures for Computation and Deduction (LIPIcs, Vol. 84). Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

Daniel Hillerström, Filip Koprivec, and Philipp Schuster (benchmarking chairs). 2023. Effect handlers benchmarks suite.
(2023). https://github.com/effect-handlers/effect-handlers-bench

Alexis King. 2022. Native, first-class, delimited continuations. https://gitlab.haskell.org/ghc/ghc/-/merge_requests/7942.
MR #7942.

Oleg Kiselyov. 2012. Delimited control in OCaml, abstractly and concretely. Theoretical Computer Science 435 (2012), 56–76.
Oleg Kiselyov and Chung-chieh Shan. 2009. Embedded Probabilistic Programming. In Domain-Specific Languages, Walid Mo-

hamed Taha (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 360–384.
Oleg Kiselyov, Chung-chieh Shan, and Amr Sabry. 2006. Delimited Dynamic Binding. In Proceedings of the International

Conference on Functional Programming (Portland, Oregon, USA). ACM, New York, NY, USA, 26–37.
Eric Koskinen and Maurice Herlihy. 2008. Checkpoints and continuations instead of nested transactions. In Proceedings of the

Twentieth Annual Symposium on Parallelism in Algorithms and Architectures (Munich, Germany) (SPAA ’08). Association
for Computing Machinery, New York, NY, USA, 160–168. doi:10.1145/1378533.1378563

Daan Leijen. 2016. Algebraic Effects for Functional Programming. Technical Report. MSR-TR-2016-29. Microsoft Research
technical report.

Daan Leijen. 2017a. Implementing Algebraic Effects in C. In Proceedings of the Asian Symposium on Programming Languages
and Systems. Springer International Publishing, Cham, Switzerland, 339–363.

Daan Leijen. 2017b. Type directed compilation of row-typed algebraic effects. In Proceedings of the Symposium on Principles
of Programming Languages. ACM, New York, NY, USA, 486–499. doi:10.1145/3093333.3009872

libuv. 2025. libuv: Cross-platform asynchronous I/O. https://libuv.org/ Accessed: 2025-02-28.
Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be Do Be Do. In Proceedings of the Symposium on Principles

of Programming Languages (Paris, France). ACM, New York, NY, USA, 500–514. doi:10.1145/3009837.3009897
Matthew Lutze and Magnus Madsen. 2024. Associated Effects: Flexible Abstractions for Effectful Programming. Proc. ACM

Program. Lang. 8, PLDI, Article 163 (June 2024), 23 pages. doi:10.1145/3656393
Cong Ma, Zhaoyi Ge, Edward Lee, and Yizhou Zhang. 2024. Lexical Effect Handlers, Directly. Proc. ACM Program. Lang. 8,

OOPSLA2, Article 330 (Oct. 2024), 29 pages. doi:10.1145/3689770
Moe Masuko and Kenichi Asai. 2009. Direct Implementation of Shift and Reset in the MinCaml Compiler. In Proceedings of

the 2009 ACM SIGPLAN Workshop on ML (Edinburgh, Scotland) (ML ’09). Association for Computing Machinery, New
York, NY, USA, 49–60. doi:10.1145/1596627.1596636

Marius Müller, Philipp Schuster, Jonathan Lindegaard Starup, Klaus Ostermann, and Jonathan Immanuel Brachthäuser. 2023.
From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers. Proc. ACM Program. Lang. 7,
OOPSLA2, Article 255 (oct 2023), 30 pages. doi:10.1145/3622831

Cao Nguyen Pham and Martin Odersky. 2024. Stack-Copying Delimited Continuations for Scala Native. In Proceedings
of the 19th ACM International Workshop on Implementation, Compilation, Optimization of OO Languages, Programs
and Systems (Vienna, Austria) (ICOOOLPS 2024). Association for Computing Machinery, New York, NY, USA, 2–13.
doi:10.1145/3679005.3685979

Du Phan, Neeraj Pradhan, and Martin Jankowiak. 2019. Composable effects for flexible and accelerated probabilistic
programming in NumPyro. arXiv preprint arXiv:1912.11554 (2019).

Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerström, KC Sivaramakrishnan, Matija Pretnar,
and Sam Lindley. 2023. Continuing WebAssembly with Effect Handlers. 7, OOPSLA2, Article 238 (oct 2023), 26 pages.
doi:10.1145/3622814

Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4 (2013).
doi:10.2168/LMCS-9(4:23)2013

Ron Pressler. 2018. Multiprompt delimited continuations. https://mail.openjdk.org/pipermail/loom-dev/2018-September/
000145.html. loom-dev mailing list.

Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen. 2021. Perceus: Garbage free reference counting
with reuse. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation. Association for Computing Machinery, New York, NY, USA, 96–111. doi:10.1145/3453483.3454032

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

https://github.com/effect-handlers/effect-handlers-bench
https://gitlab.haskell.org/ghc/ghc/-/merge_requests/7942
https://doi.org/10.1145/1378533.1378563
https://doi.org/10.1145/3093333.3009872
https://libuv.org/
https://doi.org/10.1145/3009837.3009897
https://doi.org/10.1145/3656393
https://doi.org/10.1145/3689770
https://doi.org/10.1145/1596627.1596636
https://doi.org/10.1145/3622831
https://doi.org/10.1145/3679005.3685979
https://doi.org/10.1145/3622814
https://doi.org/10.2168/LMCS-9(4:23)2013
https://mail.openjdk.org/pipermail/loom-dev/2018-September/000145.html
https://mail.openjdk.org/pipermail/loom-dev/2018-September/000145.html
https://doi.org/10.1145/3453483.3454032

260:30 Muhcu, Schuster, Steuwer, and Brachthäuser

Amr Hany Saleh and Tom Schrijvers. 2016. Efficient algebraic effect handlers for Prolog. Theory and Practice of Logic
Programming 16, 5-6 (2016), 884–898. doi:10.1017/S147106841600034X

Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. 2022. Region-based Resource Management
and Lexical Exception Handlers in Continuation-Passing Style. In Programming Languages and Systems: 31st European
Symposium on Programming, ESOP 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2–7, 2022, Proceedings (Munich, Germany). Springer-Verlag, Berlin, Heidelberg,
492–519. doi:10.1007/978-3-030-99336-8_18

KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting Effect
Handlers onto OCaml. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 206–221. doi:10.
1145/3453483.3454039

Orpheas van Rooij and Robbert Krebbers. 2025. Affect: An Affine Type and Effect System. Proc. ACM Program. Lang. 9,
POPL, Article 5 (Jan. 2025), 29 pages. doi:10.1145/3704841

Ningning Xie and Daan Leijen. 2021. Generalized Evidence Passing for Effect Handlers: Efficient Compilation of Effect
Handlers to C. Proc. ACM Program. Lang. 5, ICFP, Article 71 (aug 2021), 30 pages. doi:10.1145/3473576

Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers. 2020. Handling Bidirectional Control Flow. Proc. ACM Program.
Lang. 4, OOPSLA, Article 139 (Nov. 2020), 30 pages. doi:10.1145/3428207

Received 2025-02-27; accepted 2025-06-27

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 260. Publication date: August 2025.

https://doi.org/10.1017/S147106841600034X
https://doi.org/10.1007/978-3-030-99336-8_18
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3704841
https://doi.org/10.1145/3473576
https://doi.org/10.1145/3428207

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Limitations

	2 Multi-shot Stack Switching by Example
	2.1 Simple Stack Switching by Example
	2.2 Multiple Resumptions
	2.3 Section Conclusion

	3 Formalization
	3.1 Source Language MCode
	3.2 Target Language ASM
	3.3 Compilation
	3.4 Delimited Control Operators

	4 Implementation
	4.1 Differences to the Formalization

	5 Performance Evaluation
	6 Limitation: Continuations are not Reentrant
	7 Related Work
	7.1 Runtime Support for Control Operators
	7.2 Runtime Support for Effect Handlers
	7.3 Runtime Support for Local Mutable References

	8 Conclusion
	Acknowledgments
	References

