
Back to Direct Style: Typed and Tight
Marius Müller
University of Tübingen, Germany

Philipp Schuster
University of Tübingen, Germany

Jonathan Immanuel Brachthäuser
University of Tübingen, Germany

Klaus Ostermann
University of Tübingen, Germany

Abstract
Translating programs into continuation-passing style is a well-studied tool to explicitly deal with
the control structure of programs. This is useful, for example, for compilation. In a typed setting,
there also is a logical interpretation of such a translation as an embedding of classical logic into
intuitionistic logic. A naturally arising question is whether there is an inverse translation back
to direct style. The answer to this question depends on how the continuation-passing translation
is defined and on the domain of the inverse translation. In general, translating programs from
continuation-passing style back to direct style requires the use of control operators to account for
the use of continuations in non-trivial ways.

We present two languages, one in direct style and one in continuation-passing style. Both
languages are typed and equipped with an abstract machine semantics. Moreover, both languages
allow for non-trivial control flow. We further present a translation to continuation-passing style
and a translation back to direct style. We show that both translations are type-preserving and
also preserve semantics in a very precise way, giving an operational correspondence between the
two languages. Moreover, we show that the compositions of the translations are well-behaved. In
particular, they are syntactic one-sided inverses on the full language and full syntactic inverses when
restricted to trivial control flow.

Main Reference Marius Müller, Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. 2023.
Back to Direct Style: Typed and Tight. Proc. ACM Program. Lang. 7, OOPSLA1, Article 104
(April 2023), 28 pages. https://doi.org/10.1145/3586056

Comments This is an extended version of the main reference. Compared to the published paper, this report
contains the full appendix: full typing rules for both machines, formal description of the pure
fragment of λD, typing rules and operational semantics for conditionals and detailed proofs not given
in the published version and the formalization in Idris 2.

1 Introduction

Continuation-passing style (CPS) is a representation of programs where control flow is explicit
and named, which is why it is useful as a compiler intermediate representation [1, 19]. It
enables several program optimizations by inlining and reduction. Moreover, it is useful as an
implementation technique for control operators, because the current continuation is always
immediately available. Continuation-passing style translations translate a program into CPS.
They are well-studied and exist in many different variants. In typed languages, they are
defined as translations on types and terms. When interpreted logically, they correspond to
a double-negation translation. However, CPS also has disadvantages [24, 6], as programs
are less readable, stack frames are allocated as closures on the heap [11], and control flow is
potentially arbitrary, destroying some of the guarantees of structured programming.

Direct style (DS) does not have these disadvantages. It is the preferred way in which to
write programs. Many platforms have support for DS code since they come with a call stack
where frames are allocated. In a typed language without control operators, programs directly
correspond to proofs in intuitionistic logic [16]. In a typed language with control operators,

Marius Müller, Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. “Back to Direct Style:
Typed and Tight”. Technical Report. 2023. University of Tübingen, Germany.

2 Back to Direct Style: Typed and Tight

programs correspond to proofs in classical logic [14]. Direct-style translations translate a
program from CPS back to DS. DS translations have been studied as well [7, 8, 29, 3, 4], albeit
not as much as CPS translations. Usually, they are presented as the inverse of some CPS
translation. In a typed setting, DS translations can be seen as the inverse of a double-negation
translation.

Having well-behaved translations back and forth between DS and CPS is theoretically
interesting, as it helps to understand the relationship between the two styles. But there also
is a more practical aspect. Programmers want to write programs in DS, as they are easier to
read. However, some optimizations of programs are easier to accomplish in CPS, in particular,
advanced control-flow optimizations often amount to simple beta-reduction [31]. Thus, it
can be beneficial to translate programs to CPS for compilation, especially for languages with
control operators. On the other hand, programs in DS can be executed more efficiently, as
frames are allocated on the stack and not on the heap. So, ideally, we would also like to
translate optimized programs back to DS to then run them.

To obtain theoretically satisfying results and also lay the groundwork for practical usability,
the DS language, the CPS language, the DS translation, the CPS translation, and their
combination should satisfy a number of properties, which we will list next. None of the
existing work has all of these properties. Therefore, our contributions are the following.

We present two languages, λD in direct style with control operators and λC in continuation-
passing style.

Both have a type system, which is useful for compiler intermediate representations, and
which means they admit a logical interpretation.
Both have an abstract machine with a small-step operational semantics. This allows us
to prove an operational correspondence with tight bounds on the number of steps.
Both have the properties of progress and preservation (Theorems 1 and 2 for λD, Theo-
rems 3 and 4 for λC). Well-typed programs do not get stuck.

We present two translations between them, a CPS translation and a DS translation.

Both are defined on the whole language, in other words they work on all programs. This
is important if we want to transform programs before translating back.
Both are compositional, first-order, and one-pass. These are desirable properties of CPS
translations and we argue of DS translations as well.
Both preserve well-typedness (Theorem 7). This is important if we want to interpret
them as a double-negation translation and its inverse respectively.
Both preserve semantics (Theorems 8 and 12). Indeed, we prove a step-wise correspondence
with a global upper bound on the number of steps.
Neither duplicates code. This is important if we want to actually use them in a compiler,
where code size matters.
Both are implemented in the total programming language Idris 2 [5] to make sure all
cases are covered. The DS translation has a lot of corner cases and side conditions.

Moreover, when taken together, these two translations have the following desirable properties.

The DS translation is a right inverse of the CPS translation, syntactically. When we
translate a term to DS and back, we arrive at the same term (Theorem 15).
On DS programs that do not use control operators, the DS translation also is a left
inverse of the CPS translation, syntactically (Theorem 17).

Müller, Schuster, Brachthäuser, and Ostermann 3

def f(y: Int): Int {
ret y + 1

};
val z = f(x);
ret z + 2

(a)

let f (y : Int k : ¬ Int) {
k(y + 1)

};
cnt k0(z) {

done(z + 2)
};
f (x k0)

(b)

cnt f (y : Int) {
cnt k0(z : Int) {

done(z + 2)
};
k0(y + 1)

};
f (x)

(c)

val y = ret x;
val z = ret y + 1;
ret z + 2

(d)

Figure 1 Left to right: (a) Original program in DS, (b) CPS program obtained by translation,
(c) Transformed (contified) CPS program, (d) Program translated back to DS.

We extend both translations to machine states, which allows us to freely translate back
and forth between arbitrary intermediate states.

None of the existing pairs of CPS and DS translations have all of these properties at the
same time. A thorough comparison can be found in Section 4. Next, in Section 2, we
introduce both languages and translations by example. In Section 3 we formally define both
languages, translations, and theorems about them. Moreover, we show how the languages
and translations can be extended with conditionals. Finally, in Section 5 we conclude and
lay out future work.

2 Motivation

In this section, we introduce our main ideas by example. We have two languages, one in
direct style (λD), one in continuation-passing style (λC), and two translations between them.
We start by programming in DS, translate to CPS, perform some transformations, and
translate back to DS. For better discriminability we use colors for DS programs and boldface
for keywords in CPS programs.

2.1 Basic Example
To illustrate our languages and translations, we start with the basic example in Figure 1.
Subfigure 1a shows a program in our DS language λD. We define a function f which
increments and then returns its parameter. We then call the function f on a free variable x.
Finally, we return the result z incremented by two.

Translating to CPS From this program, our CPS translation produces the λC program in
Subfigure 1b. The function f now receives a continuation parameter k. Instead of returning, it
jumps to this continuation with the result. We then construct a continuation k0. It represents
the rest of the program after the call to f. It increments z by two and calls the free top-level
continuation done. Finally, the call to f now receives this newly constructed continuation.
Running our DS translation on this program in CPS produces exactly the original program
in Subfigure 1a: it converts programs back to direct style.

Transforming We now transform the program to an equivalent one. An example for such a
transformation is contification, which specializes a function to one of its call sites. It is often
applied in optimizing compilers [19] that use CPS as intermediate language. The program in

TR 2023

4 Back to Direct Style: Typed and Tight

Subfigure 1c is the result of applying contification to function f and its call site. The function
f has become a continuation, hence the name contification. Instead of taking a continuation
as a parameter, it now always jumps to k0.

Translating back to DS Finally, we translate the manipulated CPS program back to direct
style. Subfigure 1d shows the result of our DS translation. In this example, the resulting
program is a sequence of bindings. All continuations have been eliminated. Running our
CPS translation on this program produces exactly the program in CPS shown in Subfigure
1c.

Both translations are defined for the whole language without any side conditions. This
allows us to freely transform programs before translating back. In this example, we did not
use any control operators, in other words, programs were pure. On the pure fragment, both of
our translations are inverses of each other, syntactically (Theorems 15 and 17). Finally, both
translations not only preserve semantics, but on the pure fragment they also execute exactly
the same number of steps before reaching the final state (Theorem 9 and Corollary 20). In
the next subsection, we will leave the pure fragment and demonstrate the use of control
operators.

2.2 Control Operators
In the previous subsection, we demonstrated our translations on pure programs. However,
our DS language λD also includes control operators for two reasons: Firstly, we want to
enable programmers to use them to structure their programs. Secondly, translating CPS
programs back to DS requires the insertion of control operators sometimes. Our goal is to
insert them only where necessary, i.e. where continuations are used non-trivially.

The example programs in Figure 2 use the following type of results that may either be a
success, or a failure.

data Result { Success(String), Failure(String) }

Furthermore, they use a primitive #readFile operation for asynchronous file access. It
receives a file path and two callbacks: one for success and one for failure.

Programming with control operators In Subfigure 2a we use control operators to define
a function readFile that returns a Result but internally uses the asynchronous operation
#readFile. In the implementation of readFile, we use the control operator suspend to
capture and remove the current call stack and make it available under the name onReturn.
We then define two new processes onSuccess and onFailure and invoke #readFile with
these. Both processes resume the original computation, one with Success and the other with
Failure. It is important to emphasize: the body of suspend does not run in the context
of a call stack. This means that we can neither return a value nor call a function. All we
can do is call primitive operations or resume processes. The same is true for the bodies of
processes. The function tryReadingFile can now be written straightforwardly in direct
style. The function readFile acts as a shield that protects the rest of the program from
being infected by the asynchronous nature of the operation #readFile.

Translating control operators to CPS We again translate this program to CPS. The result
is the program in Subfigure 2b. This is roughly what we would have to write manually in a
language without control operators. The whole program, including the function tryReadingFile,

Müller, Schuster, Brachthäuser, and Ostermann 5

def readFile(path: Path): Result {
suspend { onReturn ⇒

process onSuccess(content: String) {
resume onReturn(Success(content))

};
process onFailure(error: String) {

resume onReturn(Failure(error))
};
#readFile(path, onSuccess, onFailure)

}
};

def tryReadingFile(path: Path): String {
val result = readFile(path);
match result {

case Success(_) ⇒ ret "success"
case Failure(_) ⇒ ret "failure"

}
}

(a) Original λD program.

let readFile(path : Path onReturn : ¬ Result) {
cnt onSuccess(content) {

onReturn(Success(content))
};
cnt onFailure(error) {

onReturn(Failure(error))
};
#readFile(path, onSuccess, onFailure)

};

let tryReadingFile(path : Path cont : ¬ String) {
cnt k0(result) {

match result {
case Success(_) ⇒ cont(“success”)
case Failure(_) ⇒ cont(“failure”)

}
};
readFile(path k0)

}

(b) CPS translation into λC.

def tryReadingFile(path: Path): String {
suspend { cont ⇒

process onSuccess(_) {
resume cont("success") };

process onFailure(_) {
resume cont("failure") };

#readFile(path, onSuccess, onFailure)
}

}

(c) DS translation of transformed version into λD.

let tryReadingFile(path : Path cont : ¬ String) {
cnt onSuccess(_) {

cont(“success”) };
cnt onFailure(_) {

cont(“failure”) };
#readFile(path, onSuccess, onFailure)

}

(d) Transformed λC program.

Figure 2 Example program using control operators to program with asynchronous IO.

must be written in CPS as well. A CPS translation automates this process and can serve as
an implementation technique for control operators.

Transforming control operators We again transform the CPS program. This time we use
some standard inlining and reduction. The transformed version of the previous program
is shown in Subfigure 2d. Concretely, we have inlined readFile, inlined k0, and reduced the
exposed matches on known constructors. While this transformation is trivial in CPS, it would
be difficult to achieve the same result directly in DS due to the use of control operators.

Translating control operators back to DS Unfortunately, the resulting program is still in
CPS and does not use the call stack anymore. On platforms that have call stacks, we want
to avoid programs in CPS since they might allocate continuations on the heap, rather than
using the stack. Luckily, we can translate this program back to direct style. Our translation
results in approximately1 the program in Subfigure 2c. In this example, our translation

1 The actual result uses a more complicated combination of control operators in order to make the theorem
of operational correspondence true.

TR 2023

6 Back to Direct Style: Typed and Tight

had to insert a use of the control operator suspend. There is no way around this, as the
continuation cont is used twice. The resulting function tryReadingFile has the same type
as the original one and it can be used in direct style wherever the original function was used.
Indeed, this is always the case for our translations (Theorem 7). Moreover, of course, our
translations guarantee that the resulting programs have the same semantics (Corollaries 11
and 14).

2.3 Classical Logic
Since our direct-style language λD is a typed language with control operators, programs in
this language can be seen as proofs in classical logic; indeed, the typing rules of our control
operators suspend and run can be seen as the axioms of double negation elimination and
cut respectively [14]. Similar pairs of control operators appear in [23, 2, 20].

Γ, k : ¬ τ ⊢ s : #
Γ ⊢ suspend { k ⇒ s } : τ

[Suspend]
Γ ⊢ k : ¬ τ Γ ⊢ s : τ

Γ ⊢ run(k) { s } : #
[Run]

In a judgment Γ ⊢ s : # the statement s is undelimited. It does not return anything,
because there is nowhere to return to. In other words, it proves a contradiction. The suspend
statement is of type τ when its body uses the current continuation of type ¬ τ to prove a
contradiction. Similarly, the run statement proves a contradiction from a proof of ¬ τ and
a proof of τ . Operationally, the statement s is delimited by k. The previously used form
resume k(v) simply is syntactic sugar for run(k) { ret v }, which first installs the delimiter
k and then immediately returns the value v to it.

The typing rule for process creates a proof of the negation ¬ τ by deriving a contradiction
from a proof of τ .

Γ, x : τ ⊢ s0 : # Γ, k : ¬ τ ⊢ s : #
Γ ⊢ process k(x : τ) { s0 }; s : #

[Process]

Given these, it is possible to construct the classical proof of the law of excluded middle using
the axiom of double negation elimination (example left).

def lawOfExcludedMiddle(): ¬A + A {
suspend { k ⇒

process k0(a: A) {
resume k(Inr(a)) };

resume k(Inl(k0))
}

}

def callcc(program: (A → B) → A): A {
suspend { k ⇒

def escape(a: A): B {
suspend { _ ⇒ resume k(a) } };

run(k) { program(escape) }
}

}

Operationally, it captures and removes the current stack k and uses it twice. First, to
construct a new process k0 of type ¬A. Then, to delimit a statement that returns this new
process injected as the left alternative Inl(k0). It is also possible to recover the classical
control operator callcc, whose type corresponds to Peirce’s law (example on the right,
above). Operationally, it captures and removes the current stack k, and then defines a
function escape that, when called, will remove and discard the current stack and resume
with k, instead. It then calls the given program with escape. Let us stress that all programs
of type Int, even when they use these control operators, or in other words even when they
correspond to classical proofs, compute a value of type Int (Theorem 5).

Composing our translations between λC and λD results in the same program when starting
at λC. In the other direction this is not always the case. Consider the following contrived

Müller, Schuster, Brachthäuser, and Ostermann 7

example on the left, which uses control operators to define the identity function.

def identity(a: A): A {
suspend { k ⇒

run(k) { ret a }
}

}

let identity(a : A k : ¬ A) {
k(a)

}

def identity(a: A) {
ret a

}

Our CPS translation yields the term in λC in the middle. When we convert this program
back to direct style we obtain the result on the right. Indeed, since the continuation is
used trivially in this example, the use of control operators is not needed. In such cases, the
composition of our translations will remove these unnecessary appeals to classical reasoning.
However, a round trip like this is not always a simplification, even if it does not result in
the same program. This is because different combinations of control operators in a DS term
that are not simplifications of one another can yield the same CPS term. Nevertheless, a
round trip will not insert an unreasonable amount of control operators as can be seen from
the results on operational correspondence.

2.4 Section Conclusion
We present a language λD in direct style with control operators and a language λC in
continuation-passing style. Moreover, we present two translations that allow us to go back
and forth between the two. In our typed setting, they are theoretically interesting. Moreover,
they also are practically useful as they allow us to translate a program to CPS, transform it,
and go back to DS.

3 Technical Development

In this section, we formally introduce our direct-style language λD and our continuation-
passing style language λC. Note that the language constructs resume (which has already been
desugared in the previous section) and done are not included and instead defined in terms
of other language constructs. For each language, we define a type system and operational
semantics in terms of abstract machines. Moreover, we describe the translations between
the two languages. Both translations are defined on the full language and satisfy several
meta-theoretical properties, both individually and when composed with each other.

The paper is accompanied by an intrinsically-typed formalization of both languages and
their operational semantics in Idris 2 [5], which implies type safety (Theorems 1, 2, 3, 4). This
formalization also includes the two translations between the languages and the intrinsically-
typed nature implies well-typedness preservation (Theorem 7). For the other properties we
have pen-and-paper proofs which are given in Appendix D.

3.1 Direct Style
Figure 3 defines the syntax of our DS language λD. We syntactically distinguish between
statements, which can have control effects, and expressions that can not, i.e. we use fine-grain
call-by-value [22]. The only expressions are variables and literals. In particular, this means
that there are no anonymous functions, and each function must be given a name.

Syntax of statements For a cleaner presentation, sequencing of statements and returning
expressions is explicit. Moreover, functions are always unary, so application is always on

TR 2023

8 Back to Direct Style: Typed and Tight

Syntax of λD

Statements s ::= val x = s; s sequence
| ret e return
| def f (x : τ) { s }; s define
| f (e) call
| process k(x : τ) { s }; s process
| suspend { k ⇒ s } suspend
| run(e) { s } run
| exit e exit

Variables v ::= x, f , k variables

Expressions e ::= v variables
| 0 | 1 | ... integers

Syntax of Types

Types τ ::= τ → τ function type
| ¬ τ stack type
| Int base type

Environment Type Γ ::= Γ, x : τ extended environment
| ∅ empty environment

Context Type ξ ::= τ delimited context
| # undelimited context

Figure 3 The direct-style language λD.

a single expression argument. This means that all intermediate results need to be named
which greatly helps avoiding administrative redexes in the translations between λD and λC.
While our DS language shares this property with ANF, it is different from the latter in
that we allow nesting of sequencing statements. The control operator suspend { k ⇒ s }
captures the current continuation, i.e. the current stack, and makes it available as a process
in its body s by binding it to variable k. As we will see shortly it is more akin to the
control operator C proposed in [12] than to call/cc since it does not leave the stack in
place. This is important since continuations in the CPS language λC can be discarded and
this possibility should be reflected in λD in order to facilitate translating back to direct
style. The counterpart run(e) { s } runs statement s in the context of a process e. Using
the process k(x : τ) { s1 }; s2 statement such a process can be constructed and bound to
k in the environment in s2. Having explicit names for processes is again helpful for the
translations since the continuations in the CPS language are also explicitly named, as we
will see shortly. A program can be terminated with an expression e using exit e.

Syntax of types and context types There is one base type Int and a standard function
type. Furthermore, the system includes a special type ¬ τ for stacks expecting an argument
of type τ . Typing environments are entirely standard.

We have two kinds of contexts, and consequently two kinds of context types. Besides the
types τ indicating that a statement runs in the delimiting context of a stack it returns to,
there is also the context type # which signifies that a statement is undelimited and does not
return at all.

Müller, Schuster, Brachthäuser, and Ostermann 9

Statement Typing Γ ⊢ s : ξ

Γ ⊢ s0 : τ0 Γ, x0 : τ0 ⊢ s : τ

Γ ⊢ val x0 = s0; s : τ
[Sequence]

Γ ⊢ e : τ

Γ ⊢ ret e : τ
[Return]

Γ, x : τ ⊢ s0 : τ0 Γ, f : τ → τ0 ⊢ s : ξ

Γ ⊢ def f (x : τ) { s0 }; s : ξ
[Define]

Γ(f) = τ → τ0 Γ ⊢ e : τ

Γ ⊢ f (e) : τ0
[Call]

Γ, x : τ ⊢ s0 : # Γ, k : ¬ τ ⊢ s : ξ

Γ ⊢ process k(x : τ) { s0 }; s : ξ
[Process]

Γ ⊢ e : τ

Γ ⊢ exit e : #
[Exit]

Γ, k : ¬ τ ⊢ s : #
Γ ⊢ suspend { k ⇒ s } : τ

[Suspend]
Γ ⊢ e : ¬ τ Γ ⊢ s : τ

Γ ⊢ run(e) { s } : #
[Run]

Expression Typing Γ ⊢ e : τ

Γ(v) = τ

Γ ⊢ v : τ
[Var] Γ ⊢ 19 : Int

[Int]

Figure 4 Typing rules for the direct-style language λD.

3.1.1 Typing

The typing rules for λD are given in Figure 4. The judgment and rules for expressions are
completely standard. Statements, however, are typed with a context type ξ, i.e. either
with an ordinary type τ or with #. That is, some of them require a stack to be present,
others do not, yet others are polymorphic. The rules for sequencing, returning, function
definition, and application are mostly unsurprising. But note that since the only purpose of
the val-construct is to sequence statements it cannot be typed with context type #. It would,
however, be straightforward to add another construct which allows to bind an expression
to a variable in a subsequent statement that has an arbitrary context type. Moreover, in
rules Define and Process the whole statement has to have the same context type ξ as
the rest of the statement s. This means that such statements have context type # exactly
when they occur in a context where no stack is available. Processes never return and as such
the body of a process definition has context type #. Exiting a program does of course not
return either as can be seen in rule Exit. In rule Suspend, the overall statement has type
τ , thus the captured stack has type ¬ τ . It is available in the body s under the name k. The
body does not return, and the captured stack is undelimited, so suspend can be understood
as shifting to the undelimited world. Dually, as rule Run shows, run shifts back to the
delimited world. The delimiting process e has type ¬ τ and consequently the statement s
has to return a value of type τ . In the following, we will usually assume the expression e to
be a variable.

TR 2023

10 Back to Direct Style: Typed and Tight

Syntax of Machine States for λD

Values V ::= { E, (x : τ) ⇒ s } closure
| K stack
| 0 | 1 | ... integer

Environments E ::= E, x 7→ V binding
| • empty

Stacks K ::= { E, (x : τ) ⇒ s } underflow
| { E, (x : τ) ⇒ s } :: K frame

Configurations M ::= ⟨ E ∥ s ∥ K ⟩ delimited execution
| ⟨ E ∥ s ⟩ undelimited execution

Figure 5 Operational semantics of λD.

Configuration Typing ⊢ M

E ⊢env Γ Γ ⊢ s : τ τ ⊢stk K
⊢ ⟨ E ∥ s ∥ K ⟩

[Delim]

E ⊢env Γ Γ ⊢ s : #
⊢ ⟨ E ∥ s ⟩

[Undelim]

Figure 6 Typing rules for machine states for λD.

3.1.2 Semantics
The operational semantics of λD is given by an abstract machine.

Machine states Figure 5 defines the syntax of the machine. There are two different modes
of machine states, one for delimited execution and one for undelimited execution. Both
consist of a statement currently in focus and an environment, but the delimited mode
additionally has a stack the statement returns to. The statement in the undelimited mode is
non-returning and thus there is no stack. Environments are mappings from variables to
values where values are either closures, integers or stacks. A stack is a list of frames whose
last frame is an underflow frame. Note that while the syntax of closures and underflow frames
is the same, the body of a closure is a returning statement whereas the body of an underflow
frame is undelimited. The final states of the machine are of the form ⟨ E ∥ exit e ⟩ with e
being the final result. We further define done to be { •, (x : τ) ⇒ exit x } and use this as
a bottom frame to start evaluation of a closed program s in state ⟨ • ∥ s ∥ done ⟩. Typing
of the machine is unsurprising (Figure 6 defines the rules for configurations, the full set of
rules is given in Appendix A). For a machine state to be well-typed, the free variables of the
statement in focus must be covered by the environment. Moreover, in the case of delimited
configurations the type of the statement must agree with the type the stack expects.

Machine steps The evaluation steps of the abstract machine are defined in Figure 7. The
first three rules (push), (ret-1), and (ret-0) are mostly standard. The rules for returning to
the stack come in two flavors, depending on whether there is more than one frame left on the

Müller, Schuster, Brachthäuser, and Ostermann 11

(push) ⟨ E ∥ val x0 = s0; s ∥ K ⟩ → ⟨ E ∥ s0 ∥ { E, (x0 : τ0) ⇒ s } :: K ⟩

(ret-1) ⟨ E, v 7→ V ∥ ret v ∥ { E0, (x : τ) ⇒ s } :: K ⟩ → ⟨ E0, x 7→ V ∥ s ∥ K ⟩

(ret-0) ⟨ E, v 7→ V ∥ ret v ∥ { E0, (x : τ) ⇒ s } ⟩ → ⟨ E0, x 7→ V ∥ s ⟩

(def-1) ⟨ E ∥ def f (x : τ) { s0 }; s ∥ K ⟩ → ⟨ E, f 7→ { E, (x : τ) ⇒ s0 } ∥ s ∥ K ⟩

(def-0) ⟨ E ∥ def f (x : τ) { s0 }; s ⟩ → ⟨ E, f 7→ { E, (x : τ) ⇒ s0 } ∥ s ⟩

(call) ⟨ E, f 7→ { E0, (x : τ) ⇒ s }, v 7→ V ∥ f (v) ∥ K ⟩ → ⟨ E0, x 7→ V ∥ s ∥ K ⟩

(proc-1) ⟨ E ∥ process k(x : τ) { s0 }; s ∥ K ⟩ → ⟨ E, k 7→ { E, (x : τ) ⇒ s0 } ∥ s ∥ K ⟩

(proc-0) ⟨ E ∥ process k(x : τ) { s0 }; s ⟩ → ⟨ E, k 7→ { E, (x : τ) ⇒ s0 } ∥ s ⟩

(sus) ⟨ E ∥ suspend { k ⇒ s } ∥ K ⟩ → ⟨ E, k 7→ K ∥ s ⟩

(run) ⟨ E, v 7→ K ∥ run(v) { s } ⟩ → ⟨ E, v 7→ K ∥ s ∥ K ⟩

Figure 7 Machine steps of λD.

stack or not. If the frame was the last one, then the machine continues in undelimited mode,
else execution goes on with the remaining stack. We have omitted the rules for returning
integers, as they are the same, except that they do not need a binding in the environment.
The rules for defining a function add a closure to the environment and focus on the remaining
statement s. Statement s returns if and only if there is a stack. When calling a function f , it
is looked up in the environment and the environment that was captured in f is reinstalled.
The body of f comes into focus and an additional binding for the parameter is added to
the environment. We have again omitted the case where the argument is an integer. The
rules for defining a process are essentially the same as the ones for defining functions, but
note that such a process always consists of one undelimited underflow frame instead of a
closure. Rule (sus) captures the current stack, binds it as a process to k in the environment
and executes the undelimited statement in the body. In particular, if k is not used in the
statement, then the stack is discarded. Rule (run) looks up the process bound to variable v
in the environment and runs the body s with this process installed as a stack. Note that the
binding for the process in the environment persists as s may still contain v free.

3.2 Continuation-Passing Style

Figure 8 defines the syntax of our CPS language λC. The syntax for expressions and types is
identical to those of λD. Note, however, that there is no notion of context type in λC as no
term ever returns. Instead, they will jump to the next continuation.

Syntax of terms Functions in this calculus have exactly one ordinary parameter, but they
additionally have a separate continuation parameter, which is syntactically separated with a
bar. This is also reflected in function application. The cnt k(x : τ) { t }; t term can be
used to construct a continuation. Such continuations take exactly one parameter and are
called with exactly one expression. As in λD there is a construct exit e which terminates the
program with an expression e.

TR 2023

12 Back to Direct Style: Typed and Tight

Syntax of λC

Terms t ::= let f (x : τ k : ¬ τ) { t }; t function
| f (e e) application
| cnt k(x : τ) { t }; t continuation
| k(e) jump
| exit e exit

Variables v ::= x, f , k variables

Expressions e ::= v variables
| 0 | 1 | ... integers

Syntax of Types

Types τ ::= τ → τ function type
| ¬ τ continuation type
| Int base type

Environment Type Γ ::= Γ, x : τ extended environment
| ∅ empty environment

Figure 8 The continuation-passing style language λC.

Term Typing Γ ⊢ t

Γ, x : τ , k : ¬ τ0 ⊢ t0 Γ, f : τ → τ0 ⊢ t
Γ ⊢ let f (x : τ k : ¬ τ0) { t0 }; t

[Let]

Γ(f) = τ → τ0 Γ ⊢ e : τ Γ ⊢ c : ¬ τ0

Γ ⊢ f (e c)
[App]

Γ ⊢ e : τ

Γ ⊢ exit e
[Ext]

Γ, x : τ ⊢ t0 Γ, k : ¬ τ ⊢ t
Γ ⊢ cnt k(x : τ) { t0 }; t

[Cnt]
Γ(k) = ¬ τ Γ ⊢ e : τ

Γ ⊢ k(e)
[Jmp]

Expression Typing Γ ⊢ e : τ

Γ(v) = τ

Γ ⊢ v : τ
[Var] Γ ⊢ 19 : Int

[Int]

Figure 9 Typing rules for λC.

3.2.1 Typing

Figure 9 defines the typing rules for λC. The judgments and rules for expressions are again
the same as in λD. Since terms do not return anything, they are only typed in an environment,
but not against a type. The typing rules are entirely unsurprising. In rule Let the return
type of the function being defined is the type expected by its continuation parameter, as
usual in CPS. Rule App shows that the continuation expression c of a function application
must have continuation type. In the following, we will thus usually assume c to be a variable.

Müller, Schuster, Brachthäuser, and Ostermann 13

Syntax of Machine States for λC

Values V ::= { E, (x : τ k : ¬ τ) ⇒ t } function closure
| { E, (x : τ) ⇒ t } continuation closure
| 0 | 1 | ... integer

Environments E ::= E, x 7→ V binding
| • empty

Configurations M ::= ⟨ E ∥ t ⟩ execution

Figure 10 Operational semantics of λC.

(let) ⟨ E ∥ let f (x : τ k : ¬ τ0) { t0 }; t ⟩ →
⟨ E, f 7→ { E, (x : τ k : ¬ τ0) ⇒ t0 } ∥ t ⟩

(app) ⟨ E, f 7→ { E0, (x : τ k : ¬ τ0) ⇒ t }, v 7→ V, c 7→ W ∥ f (v c) ⟩ →
⟨ E0, x 7→ V, k 7→ W ∥ t ⟩

(cnt) ⟨ E ∥ cnt k(x : τ) { t0 }; t ⟩ →
⟨ E, k 7→ { E, (x : τ) ⇒ t0 } ∥ t ⟩

(jmp) ⟨ E, k 7→ { E0, (x : τ) ⇒ t }, v 7→ V ∥ k(v) ⟩ →
⟨ E0, x 7→ V ∥ t ⟩

Figure 11 Machine steps of λC

3.2.2 Semantics

The operational semantics of λC is again given by an abstract machine.

Machine states The syntax of the machine is shown in Figure 10. In contrast to the
DS machine, there is only one machine mode, with an environment and a term in focus.
Environments look the same as in direct style, but the values are different (except for
integers). Closures now come in two flavors, function closures with a continuation parameter
and continuation closures without one. The latter correspond to stacks in the direct-style
language. This is also visible in the typing of values (the rules are given in Appendix A).
While closures with a continuation parameter are of function type, those without are of
continuation type. Similar to the DS-machine the final states are ⟨ E ∥ exit e ⟩. We again
define done to be { •, (x : τ) ⇒ exit x } and define a closed program t to have one free
variable k and start evaluation in state ⟨ k 7→ done ∥ t ⟩.

Machine steps The evaluation steps of the abstract machine are shown in Figure 11. The
rules for calling a function or continuation with an integer argument are again omitted. The
rules for defining a function add a closure with a continuation parameter to the environment
and focus on the remaining term. Calling a function f essentially proceeds in the same
way as in λD but instead of having a stack, there must be a binding for the continuation
argument in the environment. The rules for defining and calling a continuation are similar,
but a continuation closure is added to the environment and the call needs no continuation
argument.

TR 2023

14 Back to Direct Style: Typed and Tight

3.3 Translations
Next, we describe the translations back and forth between the two languages presented above.
In either case, we state how the translations act on typing derivations. Note that no typing
information is used in an essential way and the same translations work in an untyped setting.
In fact, typing information is only needed for type annotations of parameters and we often
leave these annotations out in the definition of the translations.

3.3.1 From Direct Style to Continuation-Passing Style
We first describe the CPS translation on statements and then show how to extend it to the
abstract machine. Note that expressions are translated trivially.

CPS translation of statements Figure 12 defines the CPS translation on statements. To
avoid administrative redexes, the translation has an additional input, which stands for the
current continuation. It is either a continuation variable or no continuation (indicated with •).
In the first case, the continuation variable is added to the typing context for the translated
statement, while in the second case the typing context stays exactly the same.

As usual, return statements are translated to calls to the current continuation. Sequencing
is translated by defining a new continuation with the translation of the second statement as
the body and then translating the first statement with this new continuation. A translated
function application, as usual, gets the current continuation as its continuation argument.

For function definitions there are two cases, depending on whether the remaining statement
is returning or not. In either case, the translated function definition abstracts over a fresh
continuation parameter which is then used to translate the body. The remaining statement
is translated with the original input continuation or no continuation. The translation
of defining a new process also has these two cases, i.e. the translation of the remaining
statement is the same as for function definition. The definition of a new process is translated
to a definition of a continuation with the same name and its body is translated with no
continuation as it is non-returning.

In the translation of suspend the body is translated with no continuation but the
continuation variable bound by suspend is replaced with the input continuation of the
translation as the latter is the current continuation. Running a statement s in a process
bound to k0 is translated by translating s with continuation input k0. The exit-statement is
translated to its counterpart in λC.

CPS translation of machine The extension of the CPS translation to the abstract machine
is shown in Figure 13. As can be seen in the translation on the typing judgments, stacks
that expect values of type τ themselves become values of type ¬ τ .

The two different modes of machine configurations are translated a bit differently. For
undelimited execution, where there is no stack, the statement is translated with no input
continuation in the translated environment. For delimited execution the stack is translated
to a value that is added to the translated environment with a fresh variable and this variable
is then used as the input continuation for the translation of the statement.

Environments are translated by pointwise translation of the bound values. For values
there are three cases: integers are translated trivially, the translation of stacks is defined
separately, and closures are translated in essentially the same way as function definitions but
put together with the translated environment. For stacks, there are two cases. Underflow
frames are essentially translated in the same way as definitions of a new process but again put

Müller, Schuster, Brachthäuser, and Ostermann 15

(Γ1, Γ2 ⊢ s : τ × k) −→ Γ1, k : ¬ τ , Γ2 ⊢ t

(Γ ⊢ s : # × •) −→ Γ ⊢ t

Translation of Statements

CJ ret e Kk = k(e)
CJ val x = s0; s Kk = cnt k0(x) { CJ s Kk }; CJ s0 Kk0

where k0 fresh
CJ f (e) Kk = f (e k)
CJ def f (x) { s0 }; s Kk = let f (x k0) { CJ s0 Kk0

}; CJ s Kk where k0 fresh
CJ def f (x) { s0 }; s K• = let f (x k0) { CJ s0 Kk0

}; CJ s K• where k0 fresh
CJ process k0(x) { s0 }; s Kk = cnt k0(x) { CJ s0 K• }; CJ s Kk
CJ process k0(x) { s0 }; s K• = cnt k0(x) { CJ s0 K• }; CJ s K•
CJ suspend { k0 ⇒ s } Kk = CJ s K• with k0 := k
CJ run(k0) { s } K• = CJ s Kk0
CJ exit e K• = exit e

Figure 12 Translation to continuation-passing style.

Translation of Values ⊢val V : τ −→ ⊢val V : τ

CV J { E, (x : τ) ⇒ s } K = { CEJ E K, (x : τ k : ¬ τ0) ⇒ CJ s Kk } where k is fresh
CV J K K = CKJ K K
CV J 19 K = 19

Translation of Environments E ⊢env Γ −→ E ⊢env Γ

CEJ • K = •
CEJ E, x 7→ V K = CEJ E K, x 7→ CV J V K

Translation of Stacks τ ⊢stk K −→ ⊢val V : ¬ τ

CKJ { E, (x : τ) ⇒ s } K = { CEJ E K, (x : τ) ⇒ CJ s K• }
CKJ { E, (x : τ) ⇒ s } :: K K= { CEJ E K, k 7→ CKJ K K, (x : τ) ⇒ CJ s Kk } where k is fresh

Translation of Configurations ⊢ M −→ ⊢ M

CMJ ⟨ E ∥ s ⟩ K = ⟨ CEJ E K ∥ CJ s K• ⟩
CMJ ⟨ E ∥ s ∥ K ⟩ K = ⟨ CEJ E K, k 7→ CKJ K K ∥ CJ s Kk ⟩ where k is fresh

Figure 13 Translation of machine to continuation-passing style.

together with the translated environment. The translation of a frame on top of a remaining
stack is similar to the case of delimited machine configurations in that it adds the translation
of the remaining stack to the translated environment with a fresh variable and uses this
variable as input continuation for the translation of the body.

3.3.2 From Continuation-Passing Style Back to Direct Style

Let us now consider the opposite direction. We first describe how the DS translation behaves
on terms and then extend it to the abstract machine. Again, expressions are translated
trivially. As the DS translation is bottom-up we often have some side conditions for different

TR 2023

16 Back to Direct Style: Typed and Tight

Γ, k : ¬ τ ⊢ t −→ (Γ ⊢ s : τ ⇝ k) Γ ⊢ t −→ (Γ ⊢ s : # ⇝ •)

Translation of Terms

DJ f (e k) K = resetIfFree(k)(f (e))
[DApp]

DJ k(e) K = ret e ⇝ k
[DJmp]

DJ t0 K = s0 ⇝ k0

DJ let f (x k0) { t0 } K = def f (x) { s0 }
[DLet1]

DJ t0 K = s0 ⇝ •
DJ let f (x k0) { t0 } K = def f (x) { suspend { k0 ⇒ s0 } }

[DLet2]

DJ t0 K = s0 ⇝ v0 v0 ̸= k0

DJ let f (x k0) { t0 } K = def f (x) { suspend { k0 ⇒ run(v0) { s0 } } }
[DLet3]

DJ t K = s ⇝ •
DJ let f (x k0) { t0 }; t K = DJ let f (x k0) { t0 } K; s ⇝ •

[DLetN]

DJ t K = s ⇝ k
DJ let f (x k0) { t0 }; t K = resetIfFree(k)(DJ let f (x k0) { t0 } K; s)

[DLetR]

DJ t0 K = s0 ⇝ •
DJ cnt k0(x) { t0 } K = process k0(x) { s0 }

[DCnt1]

DJ t0 K = s0 ⇝ x
DJ cnt k0(x) { t0 } K = process k0(x) { run(x) { s0 } }

[DCnt2]

DJ t0 K = s0 ⇝ v0 v0 ̸= x DJ t K = s ⇝ •
DJ cnt k0(x) { t0 }; t K = resetIfFree(v0)(val x = suspend { k0 ⇒ s }; s0)

[DCntNV]

DJ t0 K else DJ t K = s ⇝ •
DJ cnt k0(x) { t0 }; t K = DJ cnt k0(x) { t0 }K; s ⇝ •

[DCntN]

DJ t0 K = s0 ⇝ v0 v0 ̸= x DJ t K = s ⇝ k k ̸= k0

DJ cnt k0(x) { t0 }; t K = resetIfFree(v0)(val x = suspend { k0 ⇒ run(k) { s } }; s0)
[DCntROV]

DJ t0 K else DJ t K = s ⇝ k k ̸= k0

DJ cnt k0(x) { t0 }; t K = resetIfFree(k)(DJ cnt k0(x) { t0 }K; s)
[DCntRO]

DJ t0 K = s0 ⇝ v0 v0 ̸= x DJ t K = s ⇝ k0

DJ cnt k0(x) { t0 }; t K = resetIfFree(v0)(val x = s; s0)
[DCntRTV]

DJ t0 K else DJ t K = s ⇝ k0

DJ cnt k0(x) { t0 }; t K = DJ cnt k0(x) { t0 }K; run(k0) { s } ⇝ •
[DCntRT]

DJ exit e K = exit e ⇝ •
[DExit]

Figure 14 Translation back to direct style.

cases which is why we give the translation in the style of inference rules.

DS translation of terms Figure 14 defines the translation on terms. Where the CPS
translation has an additional input, the DS translation has an additional output. If the
translated term is delimited, there is an additional variable as output standing for the stack

Müller, Schuster, Brachthäuser, and Ostermann 17

the translated term returns to. This variable is then removed from the environment. If the
translated term is non-returning, then there is no variable as output, again indicated by •,
and the environment stays the same. Let us refer to this additional output as continuation
output. The translation is bottom-up in that it first recursively translates the subterms and
then decides what to do depending on the continuation outputs of the translated subterms.
In some cases we have to use the constructs suspend and run in λD, which allow us to flexibly
adapt the stack where necessary, and with the bottom-up approach we try to recognize where
to insert these control operators in order to minimize their use. There are three base cases
without subterms. The exit-term is translated to its counterpart in λD and does not return.
For the translation of a function application f (e k) we use the function resetIfFree to first
check whether the continuation parameter k appears free in f (e) (which by typing means
e = k).

resetIfFree(k)(s) = if k ∈ FV(s) then run(k) { s } ⇝ • else s ⇝ k

If not, the translation has k as its output continuation as this represents the current
continuation, i.e. the stack the translated term returns to. Otherwise, we need a control
operator, since in a pure statement the current continuation cannot be the argument of a
function. Specifically, we reset f (e) to run in the process bound to k, i.e. run(k) { f (e) }.
Note that this statement then has no output continuation as it does not return. In the case
of calling a continuation k(e), typing makes it impossible that k is free in e (i.e. e = k)
since ¬ τ ̸= τ . Thus, the translation simply returns e with continuation output k. Again,
this is the stack that the translated term returns to. Without typing we could again reset
with k upon free occurrence.

For function definitions there are quite a few cases to consider, depending on the con-
tinuation outputs of translating the subterms. In any case, the result is again a function
definition in λD, but we have to insert control operators in some cases.

Rules DLet1, DLet2, and DLet3 define a helper function that determines what happens
with the actual function definition as this is independent of the remaining term. In abuse of
notation, we use the same name as for the translation function. The pure case is in DLet1
where the translated body of the function definition returns to the continuation parameter
k0 which is the current continuation. Note that this means in particular that k0 is not free in
the translated body and we can just drop the continuation parameter. If the translated
body does not return, as in DLet2, the current continuation represented by the function
parameter must have been used in a non-pure way, so we have to insert a suspend to capture
the current stack. If the stack v0 the translated body returns to is different from the current
continuation (DLet3), we also have to capture the latter but we additionally have to insert
a run(v0) to reset the translated body with the proper stack.

TR 2023

18 Back to Direct Style: Typed and Tight

Rules DLetN and DLetR then determine how to translate the whole term for function
definitions based on the result of translating the remaining term. If the translation of the
remaining term does not return, then neither does the whole statement. If it does return to
stack k, we again have to check whether k occurs free in the translated term and reset with
k if it does.

For the definition of a continuation there are even more cases to consider. Depending
on the continuation output of the translation of the body, s0, we either obtain a sequencing
statement or a definition of a new process.

The latter is the case if s0 does not return or if it returns to the parameter x of the
continuation. We have again defined a helper function for these two cases, DCnt1 and
DCnt2, which only acts on the actual definition of the continuation. In the case where
the translated body returns to x we insert a run(x). In either of these two cases we then
distinguish three cases for the translation of the remaining term t to a statement s. The
non-returning case DCntN and the case DCntRO where s returns to a stack k different from
the process k0 just defined are similar to the corresponding cases of function definition, i.e. in
the second case we reset with k if it occurs free. In the third case DCntRT where s returns
to k0 we insert a run(k0), as the process just defined cannot be the current continuation.

The case left to consider is when the translated body s0 returns to a stack v0 different from
the parameter x. In this case we can translate to a sequencing statement that binds x and
has s0 as its second statement. Depending on the result s of translating the remaining term
we have to insert control operators. The pure case is when s returns to k0 as in DCntRTV.
If s does not return as in DCntNV, we have to insert a suspend to capture the current
stack and bind it to k0. Finally, in DCntROV where s returns to a stack k different from
k0 we capture the current stack to k0 and then reset with k. In any case, we have to check
whether v0 appears free, in which case we have to reset the whole statement with v0.

DS translation of machine Figure 15 shows how the DS translation is extended to the
abstract machine. Note how, inverse to the CPS translation, values of type ¬ τ become
stacks that expect a value of type τ . Machine configurations are translated based on the
translation s of the term in focus. If s is non-returning, it is executed in an undelimited
configuration with the translated environment. If s returns to k, the value bound to k
is removed from the translated environment – we write E.rm(k) for removing the binding
to k from environment E – and its translation is used as stack for the delimited machine
configuration.

Environments are again translated by pointwise translation of the bound values. For
values, we distinguish returning from non-returning ones. Those that return are integers,
which are translated trivially, and function closures, which are again translated in essentially
the same way as function definitions put together with the translated environment. The
non-returning values are translated to stacks. The translation of these continuation closures
is similar to the translation of continuation definitions, in particular in the cases where the
translated body does not return or returns to the parameter of the continuation closure. The
case when the translated body returns to a stack k different from the parameter is more akin
to the translation of a delimited machine configuration in that the binding for k is removed
from the translated environment and the translation of the value bound to k is used as the
remaining stack on top of which the frame is put.

Müller, Schuster, Brachthäuser, and Ostermann 19

Translation of Values ⊢val V : τ −→ ⊢val V : τ

DJ t0 K = s0 ⇝ k0

DV J { E, (x : τ k0 : ¬ τ0) ⇒ t0 } K = { DEJ E K, (x : τ) ⇒ s0 }
[DFClo1]

DJ t0 K = s0 ⇝ •
DV J { E, (x : τ k0 : ¬ τ0) ⇒ t0 } K = { DEJ E K, (x : τ) ⇒ suspend { k0 ⇒ s0 } }

[DFClo2]

DJ t0 K = s0 ⇝ v0 v0 ̸= k0

DV J { E, (x : τ k0 : ¬ τ0) ⇒ t0 } K = { DEJ E K, (x : τ) ⇒ suspend { k0 ⇒ run(v0) { s0 } } }
[DFClo3]

DV J { E, (x : τ) ⇒ t0 } K = DKJ { E, (x : τ) ⇒ t0 } K
[DCClo]

DV J 19 K = 19
[DVInt]

Translation of Environments E ⊢env Γ −→ E ⊢env Γ

DEJ • K = •
[DEnv1]

DEJ E, x 7→ V K = DEJ E K, x 7→ DV J V K
[DEnv2]

Translation of Continuation Closures ⊢val V : ¬ τ −→ τ ⊢stk K
DJ t0 K = s0 ⇝ •

DKJ { E, (x : τ) ⇒ t0 } K = { DEJ E K, (x : τ) ⇒ s0 }
[DCClo1]

DJ t0 K = s0 ⇝ x
DKJ { E, (x : τ) ⇒ t0 } K = { DEJ E K, (x : τ) ⇒ run(x) { s0 } }

[DCClo2]

DJ t0 K = s0 ⇝ k k ̸= x
DKJ { E, (x : τ) ⇒ t0 } K = { DEJ E K.rm(k), (x : τ) ⇒ s0 } :: DKJ E(k) K

[DCClo3]

Translation of Configurations ⊢ M −→ ⊢ M

DJ t K = s ⇝ •
DMJ ⟨ E ∥ t ⟩ K = ⟨ DEJ E K ∥ s ⟩

[DMch1]

DJ t K = s ⇝ k
DMJ ⟨ E ∥ t ⟩ K = ⟨ DEJ E K.rm(k) ∥ s ∥ DKJ E(k) K ⟩

[DMch2]

Figure 15 Translation of machine back to direct style.

3.4 Properties
With the languages and translations in place, we want to show that they are well-behaved.
To this end, we show several meta-theoretical properties.

Soundness We start with the soundness of the languages. The following progress and
preservation theorems have been proven in Idris 2 by the intrinsic typing and the totality of
the two step-functions on the machines.

▶ Theorem 1 (Progress (DS)).
For DS machine state M, if ⊢ M then either M is of the form ⟨ E ∥ exit e ⟩ or there exists

TR 2023

20 Back to Direct Style: Typed and Tight

a unique machine state M′ such that M → M′.

▶ Theorem 2 (Preservation (DS)).
For DS machine state M, if ⊢ M and M → M′ then ⊢ M′.

▶ Theorem 3 (Progress (CPS)).
For CPS machine state M, if ⊢ M then either M is of the form ⟨ E ∥ exit e ⟩ or there exists
a unique machine state M′ such that M → M′.

▶ Theorem 4 (Preservation (CPS)).
For CPS machine state M, if ⊢ M and M → M′ then ⊢ M′.

Next, we show that if a closed program with type τ does not contain exit, then the resulting
expression has the same type. Note that if a program does contain exit, it may end with an
expression having a different type.

▶ Theorem 5 (Type preservation (DS)).
If ⊢ s : τ and s does not contain exit and ⟨ • ∥ s ∥ done ⟩ →∗ ⟨ E ∥ exit e ⟩, then Γ ⊢ e : τ

where E ⊢env Γ.

Proof. None of the machine steps can add an exit, so the final exit comes from returning to
the initial done. Thus, e has the type which done expects, i.e., τ . ◀

▶ Theorem 6 (Type preservation (CPS)).
If k : ¬ τ ⊢ t and t does not contain exit and ⟨ k 7→ done ∥ t ⟩ →∗ ⟨ E ∥ exit e ⟩, then
Γ ⊢ e : τ where E ⊢env Γ.

Proof. None of the machine steps can add an exit, so the final exit comes from calling the
initial done. Thus, e has the type which done expects, i.e., τ . ◀

Before going on, we identify the pure fragment of λD. The pure fragment consists of those
statements built up from sequencing, returning, function definition and application. Moreover,
there are no continuation types anymore and the only undelimited frame a stack can contain
is done (the syntax is given in Appendix B). The typing rules and machine steps are restricted
accordingly. We write pure(s) if the statement s is contained in the pure fragment of λD and
similarly for the other syntactic categories. The progress and preservation theorems as above
also hold for the pure fragment as is proven by a restriction of our formalization in Idris 2.

Typability preservation Now we prove some theorems about the translations, starting with
typability preservation. This has been proven in Idris 2 by the intrinsic typing and the
various transform-functions.

▶ Theorem 7 (Typability preservation).
All translations take typing derivations to typing derivations as stated above their definitions.

Semantics preservation Next, we prove semantics preservation. Since we use a small-
step abstract machine semantics, we can be very precise about how semantics is preserved,
including upper and lower bounds for the number of steps the translated machine takes.
In the following, we identify machine configurations and frames which can be identified by
weakening, contraction or reordering of environments. Moreover, we consider equality always
modulo α-equivalence. We start with the CPS translation. For every step the DS-machine
takes, the CPS-machine either takes no step or one step.

Müller, Schuster, Brachthäuser, and Ostermann 21

▶ Theorem 8 (Simulation of CM).
If ⊢ M and M → M′, then CMJ M K →? CMJ M′ K, where →? means 0 or 1 machine step.

The reason why the correspondence is not 1-to-1 is that there are steps for the control
operators suspend and run in the DS-machine but the CPS translation already includes
those steps. For example, in the translation of suspend { k ⇒ s } we simply translate the
body s and replace k by the variable in the environment to which the current continuation is
bound upon translating the machine state. In the DS-version, this capturing of the stack into
the environment is done in a machine step. But this also means that for the pure fragment,
we can be even more precise: for every step the DS-machine takes, the CPS-machine also
takes exactly one step.

▶ Theorem 9 (Simulation of CM |pure).
If ⊢ M and pure(M) and M → M′, then CMJ M K → CMJ M′ K.

Proof. Inspection of the proof of Theorem 8. ◀

As a corollary we obtain that the CPS-machine takes at most as many steps as the DS-
machine.

▶ Corollary 10 (Operational Reduction (CPS)).
If ⊢ M and M →n M′, then CMJ M K →m CMJ M′ K where m ≤ n.

Proof. By induction on n using Theorem 8. ◀

In particular, a closed term that evaluates to a result in DS, evaluates to the same result in
CPS in at most as many steps.

▶ Corollary 11 (Evaluation (CPS)).
If ⊢ s : τ and ⟨ • ∥ s ∥ done ⟩ →n ⟨ E ∥ exit e ⟩
then ⟨ k 7→ done ∥ CJ s Kk ⟩ →m ⟨ CEJ E K ∥ exit e ⟩ where k is fresh and m ≤ n.

Let us now look at the DS translation. The CPS-machine needs fewer steps, but we can give
an upper bound for the DS-machine: for every step the CPS-machine takes, the DS-machine
takes at least one and at most four steps. The reason is that we insert up to three control
operators for one construct during translation, each of which needs its own step in the
DS-machine.

▶ Theorem 12 (Simulation of DM).
If ⊢ M and M → M′, then DMJ M K →[1−4] DMJ M′ K, where →[1−4] means 1, 2, 3 or 4
machine steps.

We obtain similar corollaries as for the CPS translation above.

▶ Corollary 13 (Operational Reduction (DS)).
If ⊢ M and M →n M′, then DMJ M K →m DMJ M′ K where m ≤ 4n.

Proof. By induction on n using Theorem 12. ◀

▶ Corollary 14 (Evaluation (DS)).
If ⊢ t with DJ t K = s ⇝ k and ⟨ k 7→ done ∥ t ⟩ →n ⟨ E ∥ exit e ⟩
then ⟨ • ∥ s ∥ done ⟩ →m ⟨ DEJ E K ∥ exit e ⟩ where m ≤ 4n.

TR 2023

22 Back to Direct Style: Typed and Tight

Round trips Another interesting question is how the compositions of the two translations
behave. The round trip for λC has the particularly pleasing property of yielding the
syntactically same term.

▶ Theorem 15 (D is right inverse of C).
If Γ ⊢ t and DJ t K = s ⇝ k, then CJ s Kk = t.
If Γ ⊢ t and DJ t K = s ⇝ •, then CJ s K• = t.

We can extend this property to the abstract machines.

▶ Theorem 16 (Right inverse for machines).
If ⊢ M, then CMJ DMJ M K K = M.
If ⊢val V : τ , then CV J DV J V K K = V.
If E ⊢env Γ, then CEJ DEJ E K K = E.
If ⊢val V : ¬ τ , then CKJ DKJ V K K = V.

This means, in particular, that the CPS translation is surjective and the DS translation
is injective. As we have seen in Section 2, the converse is not true, since in general there
are multiple DS-statements, i.e. with different combinations of control operators, that are
mapped to the same CPS-term. Therefore, we do not in general insert the same control
operators during the DS translation that are removed when CPS-translating. This also
means that there is some choice of which combination of control operators to insert in the
DS translation. The choices here are made in such a way that we can easily give the tight
bounds for the number of machine steps when evaluating.

Moreover, as the round trip also affects the environment and the stack, we cannot expect
that the original machine reduces to the one after the round trip. But semantics preservation
at least gives us that both machine configurations eventually evaluate to the same result (if
they terminate) with the given upper bound for the number of steps.

For the pure fragment of λD we can again be much more precise and in fact again obtain
the syntactically same term after the round trip.

▶ Theorem 17 (D is left inverse of C|pure).
If Γ ⊢ s : τ with pure(s), then DJ CJ s Kk K = s ⇝ k where k is fresh.

This can also be extended to the abstract machine.

▶ Theorem 18 (Restricted left inverse for machines).
If ⊢ M and pure(M) then DMJ CMJ M K K = M.
If ⊢val V : τ and pure(V), then DV J CV J V K K = V.
If E ⊢env Γ and pure(E), then DEJ CEJ E K K = E.
If τ ⊢stk K and pure(K), then DKJ CKJ K K K = K.

Semantics reflection With the round-trip results in place, we get as corollaries some results
about reflection of machine steps. Let us first look at the DS translation. If there is a step
in the DS-machine between translated machine configurations, then there must be a step in
the CPS-machine between the original states.

▶ Corollary 19 (DM is step-reflecting).
Given ⊢ M and ⊢ M′, then DMJ M K → DMJ M′ K implies M → M′.

For the pure fragment of λD we have a similar result. But first, let us prove another corollary,
which states that evaluation in the CPS-machine is closed on the image of the pure fragment
and in lockstep with the DS-machine.

Müller, Schuster, Brachthäuser, and Ostermann 23

Syntax of λD

Statements s ::= ... | if e then s else s conditionals

Syntax of λC

Terms t ::= ... | if e then t else t conditionals

Syntax of Expressions

Expressions e ::= ... | true | false booleans

Syntax of Types

Types τ ::= ... | Bool base type

Figure 16 Syntax for the extension of the languages with conditionals.

▶ Corollary 20 (CPS-evaluation is closed and in lockstep on pure fragment).
Given ⊢ M and pure(M), then CMJ M K → M′ implies M → DMJ M′ K and pure(DMJ M′ K).

▶ Corollary 21 (CM |pure is step-reflecting).
Given ⊢ M and ⊢ M′ and pure(M) and pure(M′), then CMJ M K → CMJ M′ K implies
M → M′.

3.5 Conditional Statements
The languages considered so far are rather minimalistic. To make them more practically
usable, we now show how they can be extended with conditional statements. Consider a DS
translation of an if-statement

DJ if e then t1 else t2 K = if e then ... s1 ... else ... s2 ... ⇝ ?

where DJ t1 K = s1 ⇝ k1 and DJ t2 K = s2 ⇝ k2. Both branches have to return to the
same stack as the whole statement. Thus, if k1 = k2, we do not need any control operators
and the whole statement returns to this stack. This is always the case for the pure fragment.
However, if k1 ̸= k2, we have to insert control operators to adapt the stacks the two branches
return to.

3.5.1 Biased Solution
An easy solution is to pick one branch and treat it as the preferred branch, adapting the
other one. Let us pick the second branch as default. The translation is

DJ if e then t1 else t2 K = if e then suspend { k2 ⇒ run(k1) { s1 } } else s2 ⇝ k2

Figure 16 shows the straightforward syntax extensions for the two languages with conditionals.
As expressions and types are extended identically they are shown only once. The scrutinee
of the conditionals is an expression, since all intermediate results have to be named. The
typing and operational semantics are straightforward and given in Appendix C.

The CPS translation for conditionals is unsurprising, as either both branches are returning
or both are non-returning. In the first case we translate both branches with the input

TR 2023

24 Back to Direct Style: Typed and Tight

Translation of Statements

CJ if e then s1 else s2 Kk = if e then CJ s1 Kk else CJ s2 Kk
CJ if e then s1 else s2 K• = if e then CJ s1 K• else CJ s2 K•

Figure 17 Translation of conditionals to continuation-passing style.

Translation of Terms
DJ t1 K = s1 ⇝ k DJ t2 K = s2 ⇝ k

DJ if e then t1 else t2 K = if e then s1 else s2 ⇝ k
[DIfRR]

DJ t1 K = s1 ⇝ • DJ t2 K = s2 ⇝ •
DJ if e then t1 else t2 K = if e then s1 else s2 ⇝ •

[DIfNN]

DJ t1 K = s1 ⇝ • DJ t2 K = s2 ⇝ k
DJ if e then t1 else t2 K = if e then suspend { k ⇒ s1 } else s2 ⇝ k

[DIfRN]

DJ t1 K = s1 ⇝ k DJ t2 K = s2 ⇝ •
DJ if e then t1 else t2 K = if e then s1 else suspend { k ⇒ s2 } ⇝ k

[DIfNR]

DJ t1 K = s1 ⇝ k1 DJ t2 K = s2 ⇝ k2 k1 ̸= k2

DJ if e then t1 else t2 K = if e then suspend { k2 ⇒ run(k1) { s1 } } else s2 ⇝ k2
[DIfRRD]

Figure 18 Translation of conditionals back to direct style.

continuation of the whole statement, in the second case we translate both branches without
an input continuation. The CPS translation is shown in Figure 17.

As explained above, the interesting part of the extension is the DS translation. There are
different cases to consider. If both branches return to the same stack or no stack, then we do
not have to insert control operators and the whole translated term returns to the common
stack in the former case or is non-returning in the latter case. The more interesting cases
are if the branches return to different stacks or if one is returning and the other one is not.
We have explained the first case above. In the second case we have several options: a) we
can again always adapt the branch which is not the preferred one, or b) we insert a run
for the returning branch resulting in a non-returning statement for the whole term, or c)
we insert a suspend for the non-returning branch resulting in a returning statement for the
whole term. We choose option c) since we aim to obtain a returning statement, as would be
the case for a pure term. In particular, in the case that the term surrounding the if is pure
and the returning branch is too, the only place where control operators are inserted is in the
non-returning branch. The DS translation is displayed in Figure 18.

The extension fits in seamlessly with our languages. All properties in the previous
subsection still hold exactly as stated.

3.5.2 Other Alternative Designs
While the above solution works without any changes to other parts of the DS translation, it
is a bit unsatisfactory with regard to avoiding the insertion of unnecessary control operators.
For example, if the continuation output of the preferred branch is not the current continuation,
then the whole if-statement has to be adapted with control operators again. But in the
case that the current continuation is the one the non-preferred branch returns to, this is

Müller, Schuster, Brachthäuser, and Ostermann 25

unnecessary. We actually could have adapted the non-preferred branch instead, resulting
in an overall if-statement that already returns to the correct stack. To do so, however, we
would have to know which continuation is the current continuation.

Passing the current continuation down One option is to pass this information downwards
during the DS translation by having an additional continuation variable as input for the
DS translation. This works well for the translation of terms. However, when extending the
translation to the machine things become more difficult. For intermediate machine states
that are not closed it is not always clear which continuation is the current one at the toplevel
of the term in focus and for the bindings in the environment. A potential solution could
be to annotate machine states with the current continuation and adapt this annotation
appropriately when taking a machine step. This approach thus appears to require some
change to the existing languages and more investigation is needed to understand whether it
is actually feasible.

Non-deterministic translation There is another option that avoids passing down the current
continuation in the DS translation. We could instead try to defer the decision which branch
of the conditional to adapt. Later, when the current continuation is known, we choose the
right one. To do so we have to remember all possible translations for a conditional. Then the
translation for the case when the branches return to different continuations as above returns
a list as follows

DJ if e then t1 else t2 K
= [if e then s1 else suspend { k1 ⇒ run(k2) { s2 } } ⇝ k1,

if e then suspend { k2 ⇒ run(k1) { s1 } } else s2 ⇝ k2,

if e then suspend { k? ⇒ run(k1) { s1 } } else suspend { k? ⇒ run(k2) { s2 } } ⇝ k?]

Here k? has to be replaced by the current continuation when it is known, if that case is
chosen. Now, if the translation of a subexpression yields a non-singleton list, we either pick
the correct option and return that as a singleton list if the current continuation is known, or
we do the further translation for all elements in the list and return the resulting list.

At the toplevel we then pick the right option in accordance with the current continuation.
However, similar to the solution which passes the current continuation downwards, for
non-closed machine states it is not always clear which is the current continuation at the
toplevel and hence which option to pick if the translation yields multiple possible results.

4 Related Work

There is a huge body of work on translations back to direct style and in this section we
discuss how they relate to what we have presented here. Figure 19 shows several properties
and whether they are shown to hold (✓) by the different translations or not (✗), or are
conjectured (❍).

4.1 Back to Direct Style I and II
A direct-style translation was first considered by Danvy [7]. They only work on a pure
direct-style language but extend their translation to a language with call/cc in a follow-up
paper [8]. Both papers use higher-order translations to reduce administrative redexes at
translation-time. To deal with this in proofs they factor out the administrative reductions
for both translations and obtain staged versions, which is more thoroughly investigated

TR 2023

26 Back to Direct Style: Typed and Tight

Typed One-Pass Small-Step Reduction Right Detects
First-Order Preserv. Theory Inverse Pure
Composi- DS Terms
tional

Calculi without control operators
Danvy [7] ✗ ✗ ✗ ✗ ✓ —
Sabry and Felleisen [28] ✓ ✗ ✗ ✓ ✓ —
Flanagan et al. [13] ✗ ✗ ✓ ✗ ✓ —
Sabry and Wadler [30] ❍ ✓ ❍ ✓ ✓ —
Danvy and Pfenning [10] ✗ ✗ ✗ ✗ ✗ —
Nielsen [27] ✗ ✓ ✗ ✗ ✓ —
Hatcliff and Danvy [15] ✓ ✗ ✗ ✗ ✗ —

Calculi with undelimited control
Danvy and Lawall [8] ✗ ✗ ✗ ✗ ✗ ✓

Sabry and Felleisen [29] ❍ ✗ ✗ ✗ ✗ ✗

This work ✓ ✓ ✓ ✗ ✓ ✓

Calculi with delimited control
Kameyama and Hasegawa [18] ✗ ✗ ✗ ✗ ✗ ✗

Kameyama [17] ✗ ✗ ✗ ✗ ✗ ✗

Biernacki et al. [3] ✗ ✓ ✗ ✓ ✓ ✓

Biernacki et al. [4] ✗ ✓ ✗ ✓ ✓ ✓

Figure 19 Summary of related work.

in [21]. In the pure case, where the CPS language is restricted to the image of the CPS
translation via an attribute grammar, they obtain as a result that the DS translation is
inverse to the CPS translation. For the language extended with call/cc they use a counting
analysis for continuation identifiers to decide where to insert a control operator. This analysis
checks whether a continuation identifier occurs free in the scope of another continuation
identifier. This is sufficient as they do not have an abortion operator. We instead rely on a
bottom-up translation to also capture the case when no continuation identifier occurs. For
these extended languages, the translations only satisfy the weaker property of forming a
Galois connection with respect to a kind of normalization, which is to be expected, since the
CPS translation removes superfluous control operators which are not inserted again by the
DS translation. The normalization consists of performing a round trip, so on terms after
a round trip the translations are inverse. As our DS translation is the right inverse of the
CPS translation we have a Galois connection in this sense, too. Note, however, that this is
different from a Galois connection with respect to reduction (see below), and neither paper
above considers reduction or equational theories at all.

4.2 Development of ANF

Another direct-style translation was studied by Sabry and Felleisen [29]. Their goal is to
derive a set of rewrite rules for the computational λc-calculus [25]. They achieve this goal and
present an equational theory that proves the same equations as the CPS-counterpart. This
eventually leads to the system of A-normal forms for pure terms. They also give an extension
to a calculus with call/cc and an abortion operator, which together are equivalent to the
control operator of Felleisen et al. [12]. The translations used in either case are based on
evaluation contexts, making them non-compositional. In the pure case, the DS translation

Müller, Schuster, Brachthäuser, and Ostermann 27

works on a CPS language which is closed under βη-reduction and thus a bit larger than just
the image of the CPS translation. On the full languages, the translations are not inverse of
each other, but terms after a round trip are connected to the original terms with respect
to an equational theory. A round trip on the DS language brings terms into ANF. When
restricting the DS language to ANF the CPS translation becomes injective, so a restriction
of the CPS language to the image of the CPS translation makes the two translations inverses.
Moreover, with the correct rewrite rules for ANF both translations preserve reduction. An
argument for ANF over CPS as a compiler intermediate language was made by Flanagan
et al. [13]. There, the result is extended to abstract machines for the two languages, similar
to our result for the pure fragment. A difference, however, is that the pure fragment of
our language is not in ANF as we allow for nesting of val-statements. For their extension
with control operators they do not consider reduction, but only an equational theory. For
this reason, their DS translation inserts a call/cc for every binding of a continuation and
explicit calls to the continuation even when unnecessary, in contrast to Danvy and Lawall’s
and this work. In the end, they state that their results also hold in a typed setting, but do
not elaborate on that point much further.

4.3 Further Developments for Calculi Without Control Operators

In subsequent years there were further developments in different directions for direct-style
calculi without control operators. Hatcliff and Danvy [15] consider Moggi’s monadic meta
language λml [26] in a typed setting and give a translation from an appropriate CPS language
back to the meta language, forming an equational correspondence. As the source language
is λml this forms a core for DS translations for different evaluation strategies which can be
obtained by giving translations of different calculi into λml and back.

Sabry and Wadler [30] improve upon previous results by considering a reduction theory
for λc instead of merely equational correspondences. They show that their translations back
and forth form a reflection with respect to reduction, i.e. a Galois-connection with the DS
translation being the right inverse. This is a stronger result than the one of Sabry and
Felleisen [29], which for the composition of the DS translation with the CPS translation
only have a correspondence with respect to an equational theory (but already prove the
remaining properties of a Galois-connection). The CPS translation used in the paper is not
quite compositional but this could be remedied easily by unfolding the translation a bit
further. The authors moreover conjecture that their results hold in a typed setting and also
when reduction in arbitrary contexts is replaced by deterministic evaluation. Note that this
work does not consider a reduction theory but only evaluation with an abstract machine.
We have shown that the translations on the pure fragment are two-sided inverses. Perhaps,
since everything is named in our calculi, this is not too surprising. It would be interesting to
also consider a reduction theory for our approach in general.

A somewhat different direct-style translation is given by Danvy and Pfenning [10] who
aim to mechanically prove claims in [7] about continuation parameters. It relies on a stack of
intermediate results maintained during the translation, promising more efficiency and simpler
proofs. In particular, Nielsen [27] builds on the same technique to give a very simple proof
by structural induction that the first-order, one-pass and compositional CPS translation [9]
is the left inverse of the DS translation. This kind of DS translation is partly bottom-up in
the sense that it uses the stack produced by subexpressions in some cases.

TR 2023

28 Back to Direct Style: Typed and Tight

4.4 Back to Direct Style with Delimited Control

A bit later some papers on direct-style translations for calculi with delimited control operators
appeared. Kameyama and Hasegawa [18] consider a calculus with one level of shift and
reset, but as they deal with an equational theory they insert a control operator for every
occurrence of a continuation binding, similar to Sabry and Felleisen [29]. They show that
their translations form an equational correspondence in an untyped setting. This result was
later extended to the CPS-hierarchy [17].

Very recently, Biernacki et al. [3] improved upon this result in a similar way as Sabry
and Wadler [30] improved upon earlier work [29]. They consider a reduction theory for an
untyped calculus with shift and reset and show that their translations back and forth
form a reflection with respect to reduction. A similar result for shift0 and reset0 has
been shown [4]. To do so they use a CPS-calculus with a mildly context-sensitive grammar
tracking which continuation variable is the current continuation and reduction rules that
are specifically designed to keep the calculus closed under reduction. This makes it easy to
recognize the combinators that are translated to control operators when going back to direct
style. It would be interesting to see whether our approach can be extended to delimited
control operators, too.

5 Conclusion

We have presented a translation from continuation-passing style back to direct style in a typed
setting with undelimited control operators. It is the right inverse of our CPS translation and
on the pure fragment even the two-sided inverse. Both translations are total and preserve the
small-step evaluation of the abstract machine semantics of the languages with tight bounds.
Moreover, both translations are first-order, one-pass, and compositional, facilitating proofs
by structural induction. Our DS translation is bottom-up, in order to recognize where to
insert control operators and minimize their use.

We have shown an extension of our basic calculi with conditionals such that all theorems
hold as stated. However, in some cases the DS translation inserts more control operators than
necessary. We have sketched two more sophisticated approaches that should be investigated
further. Another interesting question is whether our translations can be extended to delimited
control operators.

It is possible to choose between different equivalent possibilities for the DS translation in
some of the cases. We have designed our translation in such a way that it fits particularly
nicely with the abstract machine. It would be interesting to investigate whether different
choices yield better results in other regards such as the behavior of round trips starting at the
DS language. Passing down the current continuation might open up even more possibilities
in that respect. Moreover, it would be nice to also consider reduction theories for our calculi,
in particular, to be able to reason better about optimizations in the CPS language.

Acknowledgments

The work on this project was supported by the Deutsche Forschungsgemeinschaft (DFG –
German Research Foundation) – project number DFG-448316946.

REFERENCES 29

References

1 A. W. Appel. Compiling with Continuations. Cambridge University Press, New York,
NY, USA, 1992. ISBN 0-521-41695-7. doi: 10.1017/CBO9780511609619.

2 M. Biernacka, D. Biernacki, and S. Lenglet. Typing control operators in the cps hierarchy.
In Proceedings of the 13th International ACM SIGPLAN Symposium on Principles and
Practices of Declarative Programming, PPDP ’11, page 149–160, New York, NY, USA,
2011. Association for Computing Machinery. ISBN 9781450307765. doi: 10.1145/2003476.
2003498. URL https://doi.org/10.1145/2003476.2003498.

3 D. Biernacki, M. Pyzik, and F. Sieczkowski. A Reflection on Continuation-Composing
Style. In Z. M. Ariola, editor, 5th International Conference on Formal Structures
for Computation and Deduction (FSCD 2020), volume 167 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 18:1–18:17, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. ISBN 978-3-95977-155-9. doi: 10.4230/LIPIcs.
FSCD.2020.18. URL https://drops.dagstuhl.de/opus/volltexte/2020/12340.

4 D. Biernacki, M. Pyzik, and F. Sieczkowski. Reflecting stacked continuations in a fine-
grained direct-style reduction theory. In 23rd International Symposium on Principles and
Practice of Declarative Programming, PPDP 2021, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450386890. doi: 10.1145/3479394.3479399. URL
https://doi.org/10.1145/3479394.3479399.

5 E. Brady. Idris 2: Quantitative type theory in action. Technical report, University of
St Andrews, Scotland, UK, 2020. URL https://www.type-driven.org.uk/edwinb/
papers/idris2.pdf.

6 Y. Cong, L. Osvald, G. M. Essertel, and T. Rompf. Compiling with continuations, or
without? whatever. Proc. ACM Program. Lang., 3(ICFP):79:1–79:28, July 2019. ISSN
2475-1421. doi: 10.1145/3341643.

7 O. Danvy. Back to direct style. In Symposium Proceedings on 4th European Symposium
on Programming, ESOP’92, page 130–150, Berlin, Heidelberg, 1992. Springer-Verlag.
ISBN 0387552537. doi: 10.1007/3-540-55253-7_8. URL https://doi.org/10.1007/
3-540-55253-7_8.

8 O. Danvy and J. L. Lawall. Back to direct style ii: First-class continuations. In
Proceedings of the 1992 ACM Conference on LISP and Functional Programming, LFP ’92,
page 299–310, New York, NY, USA, 1992. Association for Computing Machinery. ISBN
0897914813. doi: 10.1145/141471.141564. URL https://doi.org/10.1145/141471.
141564.

9 O. Danvy and L. R. Nielsen. A first-order one-pass cps transformation. Theor. Comput.
Sci., 308(1–3):239–257, Nov. 2003. ISSN 0304-3975. doi: 10.1016/S0304-3975(02)00733-8.
URL https://doi.org/10.1016/S0304-3975(02)00733-8.

10 O. Danvy and F. Pfenning. The occurrence of continuation parameters in CPS terms.
Technical Report CMU-CS-95-121, Department of Computer Science, Carnegie Mellon
University, Feb 1995.

11 K. Farvardin and J. Reppy. From folklore to fact: Comparing implementations of
stacks and continuations. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2020, page 75–90, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450376136. doi:
10.1145/3385412.3385994. URL https://doi.org/10.1145/3385412.3385994.

12 M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. Duba. A syntactic theory of
sequential control. Theoretical Computer Science, 52(3):205–237, 1987. ISSN 0304-3975.

TR 2023

https://doi.org/10.1145/2003476.2003498
https://drops.dagstuhl.de/opus/volltexte/2020/12340
https://doi.org/10.1145/3479394.3479399
https://www.type-driven.org.uk/edwinb/papers/idris2.pdf
https://www.type-driven.org.uk/edwinb/papers/idris2.pdf
https://doi.org/10.1007/3-540-55253-7_8
https://doi.org/10.1007/3-540-55253-7_8
https://doi.org/10.1145/141471.141564
https://doi.org/10.1145/141471.141564
https://doi.org/10.1016/S0304-3975(02)00733-8
https://doi.org/10.1145/3385412.3385994

30 REFERENCES

doi: 10.1016/0304-3975(87)90109-5. URL https://doi.org/10.1016/0304-3975(87)
90109-5.

13 C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with
continuations. In Proceedings of the ACM SIGPLAN 1993 Conference on Programming
Language Design and Implementation, PLDI ’93, page 237–247, New York, NY, USA, 1993.
Association for Computing Machinery. ISBN 0897915984. doi: 10.1145/155090.155113.
URL https://doi.org/10.1145/155090.155113.

14 T. G. Griffin. A formulae-as-type notion of control. In Proceedings of the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’90,
page 47–58, New York, NY, USA, 1989. Association for Computing Machinery. ISBN
0897913434. doi: 10.1145/96709.96714. URL https://doi.org/10.1145/96709.96714.

15 J. Hatcliff and O. Danvy. A generic account of continuation-passing styles. In Pro-
ceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’94, page 458–471, New York, NY, USA, 1994. Association
for Computing Machinery. ISBN 0897916360. doi: 10.1145/174675.178053. URL
https://doi.org/10.1145/174675.178053.

16 W. A. Howard. The formulae-as-types notion of construction. To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, 44:479–490, 1980.

17 Y. Kameyama. Axioms for control operators in the cps hierarchy. Higher Order Symbol.
Comput., 20(4):339–369, Dec. 2007. ISSN 1388-3690. doi: 10.1007/s10990-007-9009-x.
URL https://doi.org/10.1007/s10990-007-9009-x.

18 Y. Kameyama and M. Hasegawa. A sound and complete axiomatization of delimited
continuations. In Proceedings of the Eighth ACM SIGPLAN International Conference
on Functional Programming, ICFP ’03, page 177–188, New York, NY, USA, 2003.
Association for Computing Machinery. ISBN 1581137567. doi: 10.1145/944705.944722.
URL https://doi.org/10.1145/944705.944722.

19 A. Kennedy. Compiling with continuations, continued. In Proceedings of the 12th ACM
SIGPLAN International Conference on Functional Programming, ICFP ’07, page 177–190,
New York, NY, USA, 2007. Association for Computing Machinery. ISBN 9781595938152.
doi: 10.1145/1291151.1291179. URL https://doi.org/10.1145/1291151.1291179.

20 O. Kiselyov and C.-c. Shan. A substructural type system for delimited continuations. In
S. R. Della Rocca, editor, Typed Lambda Calculi and Applications, pages 223–239, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-73228-0. doi: 10.1007/
978-3-540-73228-0_17. URL https://doi.org/10.1007/978-3-540-73228-0_17.

21 J. L. Lawall and O. Danvy. Separating stages in the continuation-passing style transfor-
mation. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’93, page 124–136, New York, NY, USA, 1993. Associ-
ation for Computing Machinery. ISBN 0897915607. doi: 10.1145/158511.158613. URL
https://doi.org/10.1145/158511.158613.

22 P. B. Levy, J. Power, and H. Thielecke. Modelling environments in call-by-value pro-
gramming languages. Information and Computation, 185(2):182–210, 2003. ISSN
0890-5401. doi: 10.1016/S0890-5401(03)00088-9. URL https://doi.org/10.1016/
S0890-5401(03)00088-9.

23 M. Materzok and D. Biernacki. A dynamic interpretation of the CPS hierarchy. In R. Jhala
and A. Igarashi, editors, Programming Languages and Systems, pages 296–311, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-35182-2. doi: 10.1007/
978-3-642-35182-2_21. URL https://doi.org/10.1007/978-3-642-35182-2_21.

https://doi.org/10.1016/0304-3975(87)90109-5
https://doi.org/10.1016/0304-3975(87)90109-5
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/96709.96714
https://doi.org/10.1145/174675.178053
https://doi.org/10.1007/s10990-007-9009-x
https://doi.org/10.1145/944705.944722
https://doi.org/10.1145/1291151.1291179
https://doi.org/10.1007/978-3-540-73228-0_17
https://doi.org/10.1145/158511.158613
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1007/978-3-642-35182-2_21

REFERENCES 31

24 L. Maurer, P. Downen, Z. M. Ariola, and S. L. Peyton Jones. Compiling without
continuations. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, pages 482–494, New York, NY,
USA, 2017. ACM. ISBN 978-1-4503-4988-8. doi: 10.1145/3062341.3062380. URL
http://doi.acm.org/10.1145/3062341.3062380.

25 E. Moggi. Computational lambda-calculus and monads. In [1989] Proceedings. Fourth
Annual Symposium on Logic in Computer Science, pages 14–23, 1989. doi: 10.1109/LICS.
1989.39155.

26 E. Moggi. Notions of computation and monads. Information and Computation, 93
(1):55–92, 1991. ISSN 0890-5401. doi: 10.1016/0890-5401(91)90052-4. URL https:
//doi.org/10.1016/0890-5401(91)90052-4. Selections from 1989 IEEE Symposium
on Logic in Computer Science.

27 L. R. Nielsen. A simple correctness proof of the direct-style transformation. BRICS
Report Series, 9(2), Jan. 2002. doi: 10.7146/brics.v9i2.21719. URL https://tidsskrift.
dk/brics/article/view/21719.

28 A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing style. In
Proceedings of the 1992 ACM Conference on LISP and Functional Programming, LFP ’92,
page 288–298, New York, NY, USA, 1992. Association for Computing Machinery. ISBN
0897914813. doi: 10.1145/141471.141563. URL https://doi.org/10.1145/141471.
141563.

29 A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing style.
LISP and Symbolic Computation, 6:289–360, 1993. doi: 10.1007/BF01019462. URL
https://doi.org/10.1007/BF01019462.

30 A. Sabry and P. Wadler. A reflection on call-by-value. ACM Trans. Program. Lang.
Syst., 19(6):916–941, Nov. 1997. ISSN 0164-0925. doi: 10.1145/267959.269968. URL
https://doi.org/10.1145/267959.269968.

31 P. Schuster, J. I. Brachthäuser, and K. Ostermann. Compiling effect handlers in capability-
passing style. Proc. ACM Program. Lang., 4(ICFP), Aug. 2020. doi: 10.1145/3408975.

TR 2023

http://doi.acm.org/10.1145/3062341.3062380
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://tidsskrift.dk/brics/article/view/21719
https://tidsskrift.dk/brics/article/view/21719
https://doi.org/10.1145/141471.141563
https://doi.org/10.1145/141471.141563
https://doi.org/10.1007/BF01019462
https://doi.org/10.1145/267959.269968

32

Value Typing ⊢val V : τ

E ⊢env Γ Γ, x : τ ⊢ s : τ0

⊢val { E, (x : τ) ⇒ s } : τ → τ0
[Closure]

τ ⊢stk K
⊢val K : ¬ τ

[Stack] ⊢val 19 : Int
[Int]

Environment Typing E ⊢env Γ

E ⊢env Γ ⊢val V : τ

E, x 7→ V ⊢env Γ, x : τ
[ExtendEnv] • ⊢env ∅

[EmptyEnv]

Stack Typing τ ⊢stk K

E ⊢env Γ Γ, x : τ ⊢ s : τ0 τ0 ⊢stk K
τ ⊢stk { E, (x : τ) ⇒ s } :: K

[Frame]

E ⊢env Γ Γ, x : τ ⊢ s : #
τ ⊢stk { E, (x : τ) ⇒ s }

[Underflow]

Configuration Typing ⊢ M

E ⊢env Γ Γ ⊢ s : τ τ ⊢stk K
⊢ ⟨ E ∥ s ∥ K ⟩

[Delim]

E ⊢env Γ Γ ⊢ s : #
⊢ ⟨ E ∥ s ⟩

[Undelim]

Figure 20 Typing rules for machine states for λD.

A Typing of machines

Figure 20 shows the full typing rules for the abstract machine of λD and Figure 21 shows those
of λC. Not how undelimited stack frames in λD correspond to closures without continuation
parameter in λC.

33

Value Typing ⊢val V : τ

E ⊢env Γ Γ, x : τ , k : ¬ τ0 ⊢ t0

⊢val { E, (x : τ k : ¬ τ0) ⇒ t0 } : τ → τ0
[FunClosure]

E ⊢env Γ Γ, x : τ ⊢ t0

⊢val { E, (x : τ) ⇒ t0 } : ¬ τ
[CntClosure] ⊢val 19 : Int

[Int]

Environment Typing E ⊢env Γ

E ⊢env Γ ⊢val V : τ

E, x 7→ V ⊢env Γ, x : τ
[ExtendEnv] • ⊢env ∅

[EmptyEnv]

Configuration Typing ⊢ M

E ⊢env Γ Γ ⊢ t
⊢ ⟨ E ∥ t ⟩

[Execution]

Figure 21 Typing rules for machine states for λC.

TR 2023

34

Syntax of Pure λD

Statements s ::= val x = s; s sequence
| ret e return
| def f (x : τ) { s }; s define
| f (e) call

Variables v ::= x, f , k variables

Expressions e ::= v variables
| 0 | 1 | ... integers

Syntax of Types for Pure λD

Types τ ::= τ → τ function type
| Int base type

Environment Type Γ ::= Γ, x : τ extended environment
| ∅ empty environment

Syntax of Machine States for Pure λD

Values V ::= { E, (x : τ) ⇒ s } closure
| 0 | 1 | ... integer

Environments E ::= E, x 7→ V binding
| • empty

Stacks K ::= { E, (x : τ) ⇒ s } :: K frame
| { •, (x : τ) ⇒ exit x } done

Configurations M ::= ⟨ E ∥ s ∥ K ⟩ delimited execution

Figure 22 The pure fragment of λD.

B Pure fragment

Figure 22 shows the syntax of the pure fragment of λD. The typing rules for statements and
the machine are restricted accordingly, as are the reduction steps for the machine. Note that
the only undelimited frame is done which always is the bottom of the stack.

35

Statement Typing

Γ ⊢ e : Bool Γ ⊢ s1 : ξ Γ ⊢ s2 : ξ

Γ ⊢ if e then s1 else s2 : ξ
[If]

Term Typing

Γ ⊢ e : Bool Γ ⊢ t1 Γ ⊢ t2

Γ ⊢ if e then t1 else t2
[If]

Expression Typing

Γ ⊢ true : Bool
[True]

Γ ⊢ false : Bool
[False]

Figure 23 Typing rules for the extension of the languages with conditionals.

Machine Steps of λD

(iftru-1) ⟨ E, v 7→ true ∥ if v then s1 else s2 ∥ K ⟩ → ⟨ E, v 7→ true ∥ s1 ∥ K ⟩

(iftru-0) ⟨ E, v 7→ true ∥ if v then s1 else s2 ⟩ → ⟨ E, v 7→ true ∥ s1 ⟩

(iffls-1) ⟨ E, v 7→ false ∥ if v then s1 else s2 ∥ K ⟩ → ⟨ E, v 7→ false ∥ s2 ∥ K ⟩

(iffls-0) ⟨ E, v 7→ false ∥ if v then s1 else s2 ⟩ → ⟨ E, v 7→ false ∥ s2 ⟩

Machine Steps of λC

(iftru) ⟨ E, v 7→ true ∥ if v then t1 else t2 ⟩ → ⟨ E, v 7→ true ∥ t1 ⟩

(iffls) ⟨ E, v 7→ false ∥ if v then t1 else t2 ⟩ → ⟨ E, v 7→ false ∥ t2 ⟩

Figure 24 Machine steps for the extension of the languages with conditionals.

C Conditionals

Figure 23 shows the typing rules for conditionals in both languages which are straightforward.
The same is true for the additional machine steps displayed in Figure 24.

TR 2023

36

D Proofs

We now give the proofs omitted in the paper. Note that by type soundness and typability
preservation everything in sight is well-typed. However, typing is not essential and the proofs
would work similarly in an untyped setting by replacing induction on typing derivations by
induction the syntactic structure.

D.1 Simulation (Semantics Preservation)
We prove that CMJ · K (Theorem 8) and DMJ · K (Theorem 12) are step-preserving and the
corollaries for evaluation (Theorems 11 and 14).

D.1.1 CPS Translation
We start with the CPS translation. For every step the DS-machine takes, the CPS-machine
either takes no step or one step.

Proof. We distinguish cases according to the machine steps.

case (push)
We have

⟨ E ∥ val x0 = s0; s ∥ K ⟩ → ⟨ E ∥ s0 ∥ { E, (x0) ⇒ s } :: K ⟩

The translations of the machine configurations are

CMJ ⟨ E ∥ val x0 = s0; s ∥ K ⟩ K
= ⟨ CEJ E K, k 7→ CKJ K K ∥ CJ val x0 = s0; s Kk ⟩ (k is fresh)
= ⟨ CEJ E K, k 7→ CKJ K K ∥ cnt k0(x0) { CJ s Kk }; CJ s0 Kk0

⟩ (k0 is fresh)

and

CMJ ⟨ E ∥ s0 ∥ { E, (x0) ⇒ s } :: K ⟩ K
= ⟨ CEJ E K, k0 7→ CKJ { E, (x0) ⇒ s } :: K K ∥ CJ s0 Kk0

⟩ (k0 is fresh)
= ⟨ CEJ E K, k0 7→ { CEJ E K, k 7→ CKJ K K, (x0) ⇒ CJ s Kk } ∥ CJ s0 Kk0

⟩ (k is fresh)

By rule (cnt) we have

CMJ ⟨ E ∥ val x0 = s0; s ∥ K ⟩ K
→ ⟨ CEJ E K, k 7→ CKJ K K, k0 7→ { CEJ E K, k 7→ CKJ K K, (x0) ⇒ CJ s Kk } ∥ CJ s0 Kk0

⟩

Up to the additional mapping for k this is just what we want and since k was chosen fresh,
it is not free in CJ s0 Kk0

we can identify the two configurations by weakening

CMJ ⟨ E ∥ s0 ∥ { E, (x0) ⇒ s } :: K ⟩ K
= ⟨ CEJ E K, k 7→ CKJ K K, k0 7→ { CEJ E K, k 7→ CKJ K K, (x0) ⇒ CJ s Kk } ∥ CJ s0 Kk0

⟩

case (retv-1)
We have

⟨ E, v 7→ V ∥ ret v ∥ { E0, (x) ⇒ s } :: K ⟩ → ⟨ E0, x 7→ V ∥ s ∥ K ⟩

37

The translations of the machine configurations are

CMJ ⟨ E, v 7→ V ∥ ret v ∥ { E0, (x) ⇒ s } :: K ⟩ K
= ⟨ CEJ E K, v 7→ CV J V K, k 7→ CKJ { E0, (x) ⇒ s } :: K K ∥ CJ ret v Kk ⟩ (k is fresh)
= ⟨ CEJ E K, v 7→ CV J V K, k 7→ { CEJ E0 K, k0 7→ CKJ K K, (x) ⇒ CJ s Kk0

} ∥ k(v) ⟩ (k0 is fresh)

and

CMJ ⟨ E0, x 7→ V ∥ s ∥ K ⟩ K
= ⟨ CEJ E0 K, x 7→ CV J V K, k0 7→ CKJ K K ∥ CJ s Kk0

⟩ (k0 is fresh)

By rule (jmpv) we thus obtain (since environments are unordered)

CMJ ⟨ E, v 7→ V ∥ ret v ∥ { E0, (x) ⇒ s } :: K ⟩ K → CMJ ⟨ E0, x 7→ V ∥ s ∥ K ⟩ K

case (retv-0)
We have

⟨ E, v 7→ V ∥ ret v ∥ { E0, (x) ⇒ s } ⟩ → ⟨ E0, x 7→ V ∥ s ⟩

The translations of the machine configurations are

CMJ ⟨ E, v 7→ V ∥ ret v ∥ { E0, (x) ⇒ s } ⟩ K
= ⟨ CEJ E K, v 7→ CV J V K, k 7→ CKJ { E0, (x) ⇒ s } K ∥ CJ ret v Kk ⟩ (k is fresh)
= ⟨ CEJ E K, v 7→ CV J V K, k 7→ { CEJ E0 K, (x) ⇒ CJ s K• } ∥ k(v) ⟩

and
CMJ ⟨ E0, x 7→ V ∥ s ⟩ K
= ⟨ CEJ E0 K, x 7→ CV J V K ∥ CJ s K• ⟩

By rule (jmpv) we thus obtain

CMJ ⟨ E, v 7→ V ∥ ret v ∥ { E0, (x) ⇒ s } ⟩ K → CMJ ⟨ E0, x 7→ V ∥ s ⟩ K

case (reti-1)
We have

⟨ E ∥ ret 19 ∥ { E0, (x) ⇒ s } :: K ⟩ → ⟨ E0, x 7→ 19 ∥ s ∥ K ⟩

The translations of the machine configurations are

CMJ ⟨ E ∥ ret 19 ∥ { E0, (x) ⇒ s } :: K ⟩ K
= ⟨ CEJ E K, k 7→ CKJ { E0, (x) ⇒ s } :: K K ∥ CJ ret 19 Kk ⟩ (k is fresh)
= ⟨ CEJ E K, k 7→ { CEJ E0 K, k0 7→ CKJ K K, (x) ⇒ CJ s Kk0

} ∥ k(19) ⟩ (k0 is fresh)

and
CMJ ⟨ E0, x 7→ 19 ∥ s ∥ K ⟩ K
= ⟨ CEJ E0 K, x 7→ 19, k0 7→ CKJ K K ∥ CJ s Kk0

⟩ (k0 is fresh)

By rule (jmpi) we thus obtain (since environments are unordered)

CMJ ⟨ E ∥ ret 19 ∥ { E0, (x) ⇒ s } :: K ⟩ K → CMJ ⟨ E0, x 7→ 19 ∥ s ∥ K ⟩ K

case (reti-0)
We have

⟨ E ∥ ret 19 ∥ { E0, (x) ⇒ s } ⟩ → ⟨ E0, x 7→ 19 ∥ s ⟩

TR 2023

38

The translations of the machine configurations are

CMJ ⟨ E ∥ ret 19 ∥ { E0, (x) ⇒ s } ⟩ K
= ⟨ CEJ E K, k 7→ CKJ { E0, (x) ⇒ s } K ∥ CJ ret 19 Kk ⟩ (k is fresh)
= ⟨ CEJ E K, k 7→ { CEJ E0 K, (x) ⇒ CJ s K• } ∥ k(19) ⟩

and
CMJ ⟨ E0, x 7→ 19 ∥ s ⟩ K
= ⟨ CEJ E0 K, x 7→ 19 ∥ CJ s K• ⟩

By rule (jmpi) we thus obtain

CMJ ⟨ E ∥ ret 19 ∥ { E0, (x) ⇒ s } ⟩ K → CMJ ⟨ E0, x 7→ 19 ∥ s ⟩ K

case (def-1)
We have

⟨ E ∥ def f (x) { s0 }; s ∥ K ⟩ → ⟨ E, f 7→ { E, (x) ⇒ s0 } ∥ s ∥ K ⟩

The translations of the machine configurations are

CMJ ⟨ E ∥ def f (x) { s0 }; s ∥ K ⟩ ⟩ K
= ⟨ CEJ E K, k 7→ CKJ K K ∥ CJ def f (x) { s0 }; s Kk ⟩ (k is fresh)
= ⟨ CEJ E K, k 7→ CKJ K K ∥ let f (x k0) { CJ s0 Kk0

}; CJ s Kk ⟩ (k0 is fresh)

and

CMJ ⟨ E, f 7→ { E, (x) ⇒ s0 } ∥ s ∥ K ⟩ K
= ⟨ CEJ E K, f 7→ CV J { E, (x) ⇒ s0 } K, k 7→ CKJ K K ∥ CJ s Kk ⟩ (k is fresh)
= ⟨ CEJ E K, f 7→ { CEJ E K, (x k0) ⇒ CJ s0 Kk0

}, k 7→ CKJ K K ∥ CJ s Kk ⟩ (k0 is fresh)

By rule (let) we have

CMJ ⟨ E ∥ def f (x) { s0 }; s ∥ K ⟩ ⟩ K
→ ⟨ CEJ E K, k 7→ CKJ K K, f 7→ { CEJ E K, k 7→ CKJ K K, (x k0) ⇒ CJ s0 Kk0

} ∥ CJ s Kk ⟩

Up to the additional mapping for k in the definition of f this is just what we want and since
k was chosen fresh, it is not free in CJ s0 Kk0

and we can identify the two definitions of f by
weakening and hence also the configurations.

case (def-0)
We have

⟨ E ∥ def f (x) { s0 }; s ⟩ → ⟨ E, f 7→ { E, (x) ⇒ s0 } ∥ s ⟩

The translations of the machine configurations are

CMJ ⟨ E ∥ def f (x) { s0 }; s ⟩ ⟩ K
= ⟨ CEJ E K ∥ CJ def f (x) { s0 }; s K• ⟩
= ⟨ CEJ E K ∥ let f (x k0) { CJ s0 Kk0

}; CJ s K• ⟩ (k0 is fresh)

and

CMJ ⟨ E, f 7→ { E, (x) ⇒ s0 } ∥ s ⟩ K
= ⟨ CEJ E K, f 7→ CV J { E, (x) ⇒ s0 } K ∥ CJ s K• ⟩
= ⟨ CEJ E K, f 7→ { CEJ E K, (x k0) ⇒ CJ s0 Kk0

} ∥ CJ s K• ⟩ (k0 is fresh)

39

By rule (let) we thus have

CMJ ⟨ E ∥ def f (x) { s0 }; s ∥ K ⟩ K → CMJ ⟨ E, f 7→ { E, (x) ⇒ s0 } ∥ s ⟩ K

case (callv)
We have

⟨ E, f 7→ { E0, (x) ⇒ s }, v 7→ V ∥ f (v) ∥ K ⟩ → ⟨ E0, x 7→ V ∥ s ∥ K ⟩

The translations of the machine configurations are

CMJ ⟨ E, f 7→ { E0, (x) ⇒ s }, v 7→ V ∥ f (v) ∥ K ⟩ K
= ⟨ CEJ E K, f 7→ CV J { E0, (x) ⇒ s } K, v 7→ CV J V K, k 7→ CKJ K K ∥ CJ f (v) Kk ⟩ (k is fresh)
= ⟨ CEJ E K, f 7→ { CEJ E0 K, (x k0) ⇒ CJ s Kk0

}, v 7→ CV J V K, k 7→ CKJ K K ∥ f (v k) ⟩ (k0 is fresh)

and

CMJ ⟨ E0, x 7→ V ∥ s ∥ K ⟩ K
= ⟨ CEJ E0 K, x 7→ CV J V K, k0 7→ CKJ K K ∥ CJ s Kk0

⟩ (k0 is fresh)

By rule (appv) we thus obtain

CMJ ⟨ E, f 7→ { E0, (x) ⇒ s }, v 7→ V ∥ f (v) ∥ K ⟩ K → CMJ ⟨ E0, x 7→ V ∥ s ∥ K ⟩ K

case (calli)
We have

⟨ E, f 7→ { E0, (x) ⇒ s } ∥ f (19) ∥ K ⟩ → ⟨ E0, x 7→ 19 ∥ s ∥ K ⟩

The translations of the machine configurations are

CMJ ⟨ E, f 7→ { E0, (x) ⇒ s } ∥ f (19) ∥ K ⟩ K
= ⟨ CEJ E K, f 7→ CV J { E0, (x) ⇒ s } K, k 7→ CKJ K K ∥ CJ f (19) Kk ⟩ (k is fresh)
= ⟨ CEJ E K, f 7→ { CEJ E0 K, (x k0) ⇒ CJ s Kk0

}, k 7→ CKJ K K ∥ f (19 k) ⟩ (k0 is fresh)

and
CMJ ⟨ E0, x 7→ 19 ∥ s ∥ K ⟩ K
= ⟨ CEJ E0 K, x 7→ 10, k0 7→ CKJ K K ∥ CJ s Kk0

⟩ (k0 is fresh)

By rule (appi) we thus obtain

CMJ ⟨ E, f 7→ { E0, (x) ⇒ s } ∥ f (19) ∥ K ⟩ K → CMJ ⟨ E0, x 7→ 19 ∥ s ∥ K ⟩ K

case (proc-1)
We have

⟨ E ∥ process k0(x) { s0 }; s ∥ K ⟩ → ⟨ E, k0 7→ { E, (x) ⇒ s0 } ∥ s ∥ K ⟩

The translations of the machine configurations are

CMJ ⟨ E ∥ process k0(x) { s0 }; s ∥ K ⟩ K
= ⟨ CEJ E K, k 7→ CKJ K K ∥ CJ process k0(x) { s0 }; s Kk ⟩ (k is fresh)
= ⟨ CEJ E K, k 7→ CKJ K K ∥ cnt k0(x) { CJ s0 K• }; CJ s Kk ⟩ (k0 is fresh)

and

CMJ ⟨ E, k0 7→ { E, (x) ⇒ s0 } ∥ s ∥ K ⟩ K
= ⟨ CEJ E K, k0 7→ CKJ { E, (x) ⇒ s0 } K, k 7→ CKJ K K ∥ CJ s Kk ⟩ (k is fresh)
= ⟨ CEJ E K, k0 7→{ CEJ E K, (x) ⇒ CJ s0 K• }, k 7→ CKJ K K ∥ CJ s Kk ⟩

TR 2023

40

By rule (cnt) we have

CMJ ⟨ E ∥ process k0(x) { s0 }; s ∥ K ⟩ K
→ ⟨ CEJ E K, k 7→ CKJ K K, k0 7→{ CEJ E K, k 7→ CKJ K K, (x) ⇒ CJ s0 K• } ∥ CJ s Kk ⟩

Up to the additional mapping for k in the definition of k0 this is just what we want and since
k was chosen fresh, it is not free in CJ s0 K• and we can identify the two definitions of k0 by
weakening and hence also the configurations.

case (proc-0)
We have

⟨ E ∥ process k0(x) { s0 }; s ⟩ → ⟨ E, k0 7→ { E, (x) ⇒ s0 } ∥ s ⟩

The translations of the machine configurations are

CMJ ⟨ E ∥ process k0(x) { s0 }; s ⟩ K
= ⟨ CEJ E K ∥ CJ process k0(x) { s0 }; s K• ⟩
= ⟨ CEJ E K ∥ cnt k0(x) { CJ s0 K• }; CJ s K• ⟩ (k0 is fresh)

and
CMJ ⟨ E, k0 7→ { E, (x) ⇒ s0 } ∥ s ⟩ K
= ⟨ CEJ E K, k0 7→ CKJ { E, (x) ⇒ s0 } K ∥ CJ s K• ⟩
= ⟨ CEJ E K, k0 7→{ CEJ E K, (x) ⇒ CJ s0 K• } ∥ CJ s K• ⟩

By rule (cnt) we thus obtain

CMJ ⟨ E ∥ process k0(x) { s0 }; s ⟩ K → CMJ ⟨ E, k0 7→ { E, (x) ⇒ s0 } ∥ s ⟩ K

case (sus)
We have

⟨ E ∥ suspend { k0 ⇒ s } ∥ K ⟩ → ⟨ E, k0 7→ K ∥ s ⟩

The translations of the machine configurations are

CMJ ⟨ E ∥ suspend { k0 ⇒ s } ∥ K ⟩ K
= ⟨ CEJ E K, k 7→ CKJ K K ∥ CJ suspend { k0 ⇒ s } Kk ⟩ (k is fresh)
= ⟨ CEJ E K, k0 7→ CKJ K K ∥ CJ s K• ⟩ (α-renaming)

and
CMJ ⟨ E, k0 7→ K ∥ s ⟩ K
= ⟨ CEJ E K, k0 7→ CKJ K K ∥ CJ s K• ⟩

Both translations are the same, thus we obtain

CMJ ⟨ E ∥ suspend { k0 ⇒ s } ∥ K ⟩ K →? CMJ ⟨ E, k0 7→ K ∥ s ⟩ K

case (run)
We have

⟨ E, v 7→ K ∥ run(v) { s } ⟩ → ⟨ E, v 7→ K ∥ s ∥ K ⟩

The translations of the machine configurations are

CMJ ⟨ E, v 7→ K ∥ run(v) { s } ⟩ K
= ⟨ CEJ E K, v 7→ CKJ K K ∥ CJ run(v) { s } K• ⟩
= ⟨ CEJ E K, v 7→ CKJ K K ∥ CJ s Kv ⟩

41

and
CMJ ⟨ E, v 7→ K ∥ s ∥ K ⟩ K
= ⟨ CEJ E K, v 7→ CKJ K K, k 7→ CKJ K K ∥ CJ s Kk ⟩ (k is fresh)

Since k is fresh and is bound to the same value as v, we can α-rename k to v and then
contract k and v in the environment to obtain the same configuration as above. Thus, both
translations are the same and we obtain

CMJ ⟨ E, v 7→ K ∥ run(v) { s } ⟩ K →? CMJ ⟨ E, v 7→ K ∥ s ∥ K ⟩ K

case (iftruv-1)
We have

⟨ E, v 7→ true ∥ if v then s1 else s2 ∥ K ⟩ → ⟨ E, v 7→ true ∥ s1 ∥ K ⟩

The translations of the machine configurations are

CMJ ⟨ E, v 7→ true ∥ if v then s1 else s2 ∥ K ⟩ K
= ⟨ CEJ E K, v 7→ true, k 7→ CKJ K K ∥ CJ if v then s1 else s2 Kk ⟩ (k is fresh)
= ⟨ CEJ E K, v 7→ true, k 7→ CKJ K K ∥ if v then CJ s1 Kk else CJ s2 Kk ⟩

and
CMJ ⟨ E, v 7→ true ∥ s1 ∥ K ⟩ K
= ⟨ CEJ E K, v 7→ true, k 7→ CKJ K K ∥ CJ s1 Kk ⟩ (k is fresh)

By rule (iftruv) we thus obtain (since environments are unordered)

CMJ ⟨ E, v 7→ true ∥ if v then s1 else s2 ∥ K ⟩ K → CMJ ⟨ E, v 7→ true ∥ s1 ∥ K ⟩ K

case (iftruv-0)
We have

⟨ E, v 7→ true ∥ if v then s1 else s2 ⟩ → ⟨ E, v 7→ true ∥ s1 ⟩

The translations of the machine configurations are

CMJ ⟨ E, v 7→ true ∥ if v then s1 else s2 ⟩ K
= ⟨ CEJ E K, v 7→ true ∥ CJ if v then s1 else s2 K• ⟩
= ⟨ CEJ E K, v 7→ true ∥ if v then CJ s1 K• else CJ s2 K• ⟩

and
CMJ ⟨ E, v 7→ true ∥ s1 ⟩ K
= ⟨ CEJ E K, v 7→ true ∥ CJ s1 K• ⟩

By rule (iftruv) we thus obtain

CMJ ⟨ E, v 7→ true ∥ if v then s1 else s2 ⟩ K → CMJ ⟨ E, v 7→ true ∥ s1 ⟩ K

case (iftrub-1)
We have

⟨ E ∥ if true then s1 else s2 ∥ K ⟩ → ⟨ E ∥ s1 ∥ K ⟩

The translations of the machine configurations are

CMJ ⟨ E ∥ if true then s1 else s2 ∥ K ⟩ K
= ⟨ CEJ E K, k 7→ CKJ K K ∥ CJ if true then s1 else s2 Kk ⟩ (k is fresh)
= ⟨ CEJ E K, k 7→ CKJ K K ∥ if true then CJ s1 Kk else CJ s2 Kk ⟩

TR 2023

42

and
CMJ ⟨ E ∥ s1 ∥ K ⟩ K
= ⟨ CEJ E K, k 7→ CKJ K K ∥ CJ s1 Kk ⟩ (k is fresh)

By rule (iftrub) we thus obtain (since environments are unordered)

CMJ ⟨ E ∥ if true then s1 else s2 ∥ K ⟩ K → CMJ ⟨ E ∥ s1 ∥ K ⟩ K

case (iftrub-0)
We have

⟨ E ∥ if true then s1 else s2 ⟩ → ⟨ E∥ s1 ⟩

The translations of the machine configurations are

CMJ ⟨ E ∥ if true then s1 else s2 ⟩ K
= ⟨ CEJ E K ∥ CJ if true then s1 else s2 K• ⟩
= ⟨ CEJ E K ∥ if true then CJ s1 K• else CJ s2 K• ⟩

and
CMJ ⟨ E ∥ s1 ⟩ K
= ⟨ CEJ E K ∥ CJ s1 K• ⟩

By rule (iftrub) we thus obtain

CMJ ⟨ E ∥ if true then s1 else s2 ⟩ K → CMJ ⟨ E ∥ s1 ⟩ K

case (ifflsv-1)
We have

⟨ E, v 7→ false ∥ if v then s1 else s2 ∥ K ⟩ → ⟨ E, v 7→ false ∥ s2 ∥ K ⟩

The translations of the machine configurations are

CMJ ⟨ E, v 7→ false ∥ if v then s1 else s2 ∥ K ⟩ K
= ⟨ CEJ E K, v 7→ false, k 7→ CKJ K K ∥ CJ if v then s1 else s2 Kk ⟩ (k is fresh)
= ⟨ CEJ E K, v 7→ false, k 7→ CKJ K K ∥ if v then CJ s1 Kk else CJ s2 Kk ⟩

and
CMJ ⟨ E, v 7→ false ∥ s2 ∥ K ⟩ K
= ⟨ CEJ E K, v 7→ false, k 7→ CKJ K K ∥ CJ s2 Kk ⟩ (k is fresh)

By rule (ifflsv) we thus obtain (since environments are unordered)

CMJ ⟨ E, v 7→ false ∥ if v then s1 else s2 ∥ K ⟩ K → CMJ ⟨ E, v 7→ false ∥ s2 ∥ K ⟩ K

case (ifflsv-0)
We have

⟨ E, v 7→ false ∥ if v then s1 else s2 ⟩ → ⟨ E, v 7→ false ∥ s2 ⟩

The translations of the machine configurations are

CMJ ⟨ E, v 7→ false ∥ if v then s1 else s2 ⟩ K
= ⟨ CEJ E K, v 7→ false ∥ CJ if v then s1 else s2 K• ⟩
= ⟨ CEJ E K, v 7→ false ∥ if v then CJ s1 K• else CJ s2 K• ⟩

43

and
CMJ ⟨ E, v 7→ false ∥ s2 ⟩ K
= ⟨ CEJ E K, v 7→ false ∥ CJ s2 K• ⟩

By rule (ifflsv) we thus obtain

CMJ ⟨ E, v 7→ false ∥ if v then s1 else s2 ⟩ K → CMJ ⟨ E, v 7→ false ∥ s2 ⟩ K

case (ifflsb-1)
We have

⟨ E ∥ if false then s1 else s2 ∥ K ⟩ → ⟨ E ∥ s2 ∥ K ⟩

The translations of the machine configurations are

CMJ ⟨ E ∥ if false then s1 else s2 ∥ K ⟩ K
= ⟨ CEJ E K, k 7→ CKJ K K ∥ CJ if false then s1 else s2 Kk ⟩ (k is fresh)
= ⟨ CEJ E K, k 7→ CKJ K K ∥ if false then CJ s1 Kk else CJ s2 Kk ⟩

and
CMJ ⟨ E ∥ s2 ∥ K ⟩ K
= ⟨ CEJ E K, k 7→ CKJ K K ∥ CJ s2 Kk ⟩ (k is fresh)

By rule (ifflsb) we thus obtain (since environments are unordered)

CMJ ⟨ E ∥ if false then s1 else s2 ∥ K ⟩ K → CMJ ⟨ E ∥ s2 ∥ K ⟩ K

case (ifflsb-0)
We have

⟨ E ∥ if false then s1 else s2 ⟩ → ⟨ E∥ s2 ⟩

The translations of the machine configurations are

CMJ ⟨ E ∥ if false then s1 else s2 ⟩ K
= ⟨ CEJ E K ∥ CJ if false then s1 else s2 K• ⟩
= ⟨ CEJ E K ∥ if false then CJ s1 K• else CJ s2 K• ⟩

and
CMJ ⟨ E ∥ s2 ⟩ K
= ⟨ CEJ E K ∥ CJ s2 K• ⟩

By rule (ifflsb) we thus obtain

CMJ ⟨ E ∥ if false then s1 else s2 ⟩ K → CMJ ⟨ E ∥ s2 ⟩ K

◀

As a corollary we obtain that a closed term that evaluates to a result in DS, evaluates to the
same result in CPS in at most as many steps.

Proof. Note that

CKJ done K = { CEJ • K, (x : τ) ⇒ CJ exit x K• } = done

Thus, since
CMJ ⟨ • ∥ s ∥ done ⟩ K = ⟨ k 7→ done ∥ CJ s Kk ⟩

and
CMJ ⟨ E ∥ exit e ⟩ K = ⟨ CEJ E K ∥ exit e ⟩

this follows by Corollary 10. ◀

TR 2023

44

D.1.2 DS Translation
Now we prove simulation of the DS translation. For every step the CPS-machine takes, the
DS-machine takes at least one and at most four steps.

Proof. We distinguish cases according to the machine steps and then subcases according to
the translation of terms.

case (appv)
We have

⟨ E, f 7→ { E0, (x k0) ⇒ t }, v 7→ V, k 7→ W ∥ f (v k) ⟩ → ⟨ E0, x 7→ V, k0 7→ W ∥ t ⟩

We distinguish whether k ∈ FV(f (v)) or not.
If so, we obtain by rule (run) that

DMJ ⟨ E, f 7→ { E0, (x k0) ⇒ t }, v 7→ V, k 7→ W ∥ f (v k) ⟩ K
= ⟨ DEJ E K, f 7→ DV J { E0, (x k0) ⇒ t } K, v 7→ DV J V K, k 7→ DV J W K ∥ run(k) { f (v) } ⟩
→ ⟨ DEJ E K, f 7→ DV J { E0, (x k0) ⇒ t } K, v 7→ DV J V K, k 7→ DKJ W K ∥ f (v) ∥ DKJ W K ⟩

If not, we have

DMJ ⟨ E, f 7→ { E0, (x k0) ⇒ t }, v 7→ V, k 7→ W ∥ f (v k) ⟩ K
= ⟨ DEJ E K, f 7→ DV J { E0, (x k0) ⇒ t } K, v 7→ DV J V K ∥ f (v) ∥ DKJ W K ⟩

We now distinguish cases according to the translation of t.

Case DJ t K = s ⇝ •:
In this case we have

DV J { E0, (x k0) ⇒ t } K
= { DEJ E0 K, (x) ⇒ suspend { k0 ⇒ s } }

and
DMJ ⟨ E0, x 7→ V, k0 7→ W ∥ t ⟩ K
= ⟨ DEJ E0 K, x 7→ DV J V K, k0 7→ DKJ W K ∥ s ⟩

By rules (callv) and (sus) we obtain

DMJ ⟨ E, f 7→ { E0, (x k0) ⇒ t }, v 7→ V, k 7→ W ∥ f (v k) ⟩ K
→1,2 ⟨ DEJ E0 K, x 7→ DV J V K ∥ suspend { k0 ⇒ s } ∥ DKJ W K ⟩
→ ⟨ DEJ E0 K, x 7→ DV J V K, k0 7→ DKJ W K ∥ s ⟩

which is exactly what we want.

Case DJ t K = s ⇝ k0:
In this case we have

DV J { E0, (x k0) ⇒ t } K
= { DEJ E0 K, (x) ⇒ s }

and
DMJ ⟨ E0, x 7→ V, k0 7→ W ∥ t ⟩ K
= ⟨ DEJ E0 K, x 7→ DV J V K ∥ s ∥ DKJ W K ⟩

By rule (callv) we obtain

DMJ ⟨ E, f 7→ { E0, (x k0) ⇒ t }, v 7→ V, k 7→ W ∥ f (v k) ⟩ K
→1,2 ⟨ DEJ E0 K, x 7→ DV J V K ∥ s ∥ DKJ W K ⟩

45

which is exactly what we want.

Case DJ t K = s ⇝ v0 where v0 ̸= k0:
In this case we have

DV J { E0, (x k0) ⇒ t } K
= { DEJ E0 K, (x) ⇒ suspend { k0 ⇒ run(v0) { s } } }

and

DMJ ⟨ E0, x 7→ V, k0 7→ W ∥ t ⟩ K
= ⟨ DEJ E0 K.rm(v0), x 7→ DV J V K, k0 7→ DKJ W K ∥ s ∥ DKJ E(v0) K ⟩

By rules (callv), (sus) and (run) we obtain

DMJ ⟨ E, f 7→ { E0, (x k0) ⇒ t }, v 7→ V, k 7→ W ∥ f (v k) ⟩ K
→1,2 ⟨ DEJ E0 K, x 7→ DV J V K ∥ suspend { k0 ⇒ run(v0) { s } } ∥ DKJ W K ⟩
→ ⟨ DEJ E0 K, x 7→ DV J V K, k0 7→ DKJ W K ∥ run(v0) { s } ⟩
→ ⟨ DEJ E0 K, x 7→ DV J V K, k0 7→ DKJ W K ∥ s ∥ DKJ E(v0) K ⟩

Apart from the binding for v0 in the environment this is just what we want and since v0 is
not free in s we can identify the two configurations by weakening.

case (appi)
We have

⟨ E, f 7→ { E0, (x k0) ⇒ t }, k 7→ W ∥ f (19 k) ⟩ → ⟨ E0, x 7→ 19, k0 7→ W ∥ t ⟩

Note that by typing k ̸∈ FV(f (19)) = { f }, so we have

DMJ ⟨ E, f 7→ { E0, (x k0) ⇒ t }, k 7→ W ∥ f (19 k) ⟩ K
= ⟨ DEJ E K, f 7→ DV J { E0, (x k0) ⇒ t } K ∥ f (19) ∥ DKJ W K ⟩

We now distinguish cases according to the translation of t.

Case DJ t K = s ⇝ •:
In this case we have

DV J { E0, (x k0) ⇒ t } K
= { DEJ E0 K, (x) ⇒ suspend { k0 ⇒ s } }

and
DMJ ⟨ E0, x 7→ 19, k0 7→ W ∥ t ⟩ K
= ⟨ DEJ E0 K, x 7→ 19, k0 7→ DKJ W K ∥ s ⟩

By rules (calli) and (sus) we obtain

DMJ ⟨ E, f 7→ { E0, (x k0) ⇒ t }, k 7→ W ∥ f (19 k) ⟩ K
→ ⟨ DEJ E0 K, x 7→ 19 ∥ suspend { k0 ⇒ s } ∥ DKJ W K ⟩
→ ⟨ DEJ E0 K, x 7→ 19, k0 7→ DKJ W K ∥ s ⟩

which is exactly what we want.

TR 2023

46

Case DJ t K = s ⇝ k0:
In this case we have

DV J { E0, (x k0) ⇒ t } K
= { DEJ E0 K, (x) ⇒ s }

and
DMJ ⟨ E0, x 7→ 19, k0 7→ W ∥ t ⟩ K
= ⟨ DEJ E0 K, x 7→ 19 ∥ s ∥ DKJ W K ⟩

By rule (calli) we obtain

DMJ ⟨ E, f 7→ { E0, (x k0) ⇒ t }, k 7→ W ∥ f (19 k) ⟩ K
→ ⟨ DEJ E0 K, x 7→ 19 ∥ s ∥ DKJ W K ⟩

which is exactly what we want.

Case DJ t K = s ⇝ v0 where v0 ̸= k0:
In this case we have

DV J { E0, (x k0) ⇒ t } K
= { DEJ E0 K, (x) ⇒ suspend { k0 ⇒ run(v0) { s } } }

and
DMJ ⟨ E0, x 7→ 19, k0 7→ W ∥ t ⟩ K
= ⟨ DEJ E0 K.rm(v0), x 7→ 19, k0 7→ DKJ W K ∥ s ∥ DKJ E(v0) K ⟩

By rules (calli), (sus) and (run) we obtain

DMJ ⟨ E, f 7→ { E0, (x k0) ⇒ t }, v 7→ V, k 7→ W ∥ f (v k) ⟩ K
→ ⟨ DEJ E0 K, x 7→ 19 ∥ suspend { k0 ⇒ run(v0) { s } } ∥ DKJ W K ⟩
→ ⟨ DEJ E0 K, x 7→ 19, k0 7→ DKJ W K ∥ run(v0) { s } ⟩
→ ⟨ DEJ E0 K, x 7→ 19, k0 7→ DKJ W K ∥ s ∥ DKJ E(v0) K ⟩

Apart from the binding for v0 in the environment this is just what we want and since v0 is
not free in s we can identify the two configurations by weakening.

case (jmpv)
We have

⟨ E, k 7→ { E0, (x) ⇒ t }, v 7→ V ∥ k(v) ⟩ → ⟨ E0, x 7→ V ∥ t ⟩

and
DMJ ⟨ E, k 7→ { E0, (x) ⇒ t }, v 7→ V ∥ k(v) ⟩ K
= ⟨ DEJ E K, v 7→ DV J V K ∥ ret v ∥ DKJ { E0, (x) ⇒ t } K ⟩

We now distinguish cases according to the translation of t.

Case DJ t K = s ⇝ •:
In this case we have

DKJ { E0, (x) ⇒ t } K
= { DEJ E0 K, (x) ⇒ s } }

and
DMJ ⟨ E0, x 7→ V ∥ t ⟩ K
= ⟨ DEJ E0 K, x 7→ DV J V K ∥ s ⟩

47

By rule (retv-0) we obtain

DMJ ⟨ E, k 7→ { E0, (x) ⇒ t }, v 7→ V ∥ k(v) ⟩ K
→ ⟨ DEJ E0 K, x 7→ DV J V K ∥ s ⟩

which is exactly what we want.

Case DJ t K = s ⇝ x:
In this case we have

DKJ { E0, (x) ⇒ t } K
= { DEJ E0 K, (x) ⇒ run(x) { s } }

and
DMJ ⟨ E0, x 7→ V ∥ t ⟩ K
= ⟨ DEJ E0 K ∥ s ∥ DKJ V K ⟩

By rules (retv-0) and (run) we obtain

DMJ ⟨ E, k 7→ { E0, (x) ⇒ t }, v 7→ V ∥ k(v) ⟩ K
→ ⟨ DEJ E0 K, x 7→ DKJ V K ∥ run(x) { s } ⟩
→ ⟨ DEJ E0 K, x 7→ DKJ V K ∥ s ∥ DKJ V K ⟩

Apart from the binding for x in the environment this is just what we want and since x is not
free in s we can identify the two configurations by weakening.

Case DJ t K = s ⇝ k where k ̸= x:
In this case we have

DKJ { E0, (x) ⇒ t } K
= { DEJ E0 K.rm(k), (x) ⇒ s } :: DKJ E(k) K

and
DMJ ⟨ E0, x 7→ V ∥ t ⟩ K
= ⟨ DEJ E0 K.rm(k), x 7→ DV J V K ∥ s ∥ DKJ E(k) K ⟩

By rule (retv-1) we obtain

DMJ ⟨ E, k 7→ { E0, (x) ⇒ t }, v 7→ V ∥ k(v) ⟩ K
→ ⟨ DEJ E0 K.rm(k), x 7→ DV J V K ∥ s ∥ DKJ E(k) K ⟩

which is exactly what we want.

case (jmpi)
We have

⟨ E, k 7→ { E0, (x) ⇒ t } ∥ k(19) ⟩ → ⟨ E0, x 7→ 19 ∥ t ⟩

and
DMJ ⟨ E, k 7→ { E0, (x) ⇒ t } ∥ k(19) ⟩ K
= ⟨ DEJ E K ∥ ret 19 ∥ DKJ { E0, (x) ⇒ t } K ⟩

We now distinguish cases according to the translation of t.

TR 2023

48

Case DJ t K = s ⇝ •:
In this case we have

DKJ { E0, (x) ⇒ t } K
= { DEJ E0 K, (x) ⇒ s } }

and
DMJ ⟨ E0, x 7→ 19 ∥ t ⟩ K
= ⟨ DEJ E0 K, x 7→ 19 ∥ s ⟩

By rule (reti-0) we obtain

DMJ ⟨ E, k 7→ { E0, (x) ⇒ t } ∥ k(19) ⟩ K
→ ⟨ DEJ E0 K, x 7→ DV J V K ∥ s ⟩

which is exactly what we want.

Case DJ t K = s ⇝ x:
This case is impossible since x : Int here.

Case DJ t K = s ⇝ k where k ̸= x:
In this case we have

DKJ { E0, (x) ⇒ t } K
= { DEJ E0 K.rm(k), (x) ⇒ s } :: DKJ E(k) K

and
DMJ ⟨ E0, x 7→ 19 ∥ t ⟩ K
= ⟨ DEJ E0 K.rm(k), x 7→ 19 ∥ s ∥ DKJ E(k) K ⟩

By rule (reti-1) we obtain

DMJ ⟨ E, k 7→ { E0, (x) ⇒ t } ∥ k(19) ⟩ K
→ ⟨ DEJ E0 K.rm(k), x 7→ 19 ∥ s ∥ DKJ E(k) K ⟩

which is exactly what we want.

case (let)
We have

⟨ E ∥ let f (x k0) { t0 }; t ⟩ → ⟨ E, f 7→ { E, (x k0) ⇒ t0 } ∥ t ⟩

For the translations of the machine configurations we distinguish the cases of the translation
of the left-hand term.

Case DJ t K = s ⇝ • and DJ t0 K = s0 ⇝ k0:
In this case we obtain

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K
= ⟨ DEJ E K ∥ def f (x) { s0 }; s ⟩

and
DMJ ⟨ E, f 7→ { E, (x k0) ⇒ t0 } ∥ t ⟩ K
= ⟨ DEJ E K, f 7→ DV J { E, (x k0) ⇒ t0 } K ∥ s ⟩
= ⟨ DEJ E K, f 7→ { DEJ E K, (x) ⇒ s0 } ∥ s ⟩

49

By rule (def-0) we thus have

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K → DMJ ⟨ E, f 7→ { E, (x k0) ⇒ t0 } ∥ t ⟩ K

Case DJ t K = s ⇝ • and DJ t0 K = s0 ⇝ •:
In this case we obtain

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K
= ⟨ DEJ E K ∥ def f (x) { suspend { k0 ⇒ s0 } }; s ⟩

and
DMJ ⟨ E, f 7→ { E, (x k0) ⇒ t0 } ∥ t ⟩ K
= ⟨ DEJ E K, f 7→ DV J { E, (x k0) ⇒ t0 } K ∥ s ⟩
= ⟨ DEJ E K, f 7→ { DEJ E K, (x) ⇒ suspend { k0 ⇒ s0 } } ∥ s ⟩

By rule (def-0) we thus have

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K → DMJ ⟨ E, f 7→ { E, (x k0) ⇒ t0 } ∥ t ⟩ K

Case DJ t K = s ⇝ • and DJ t0 K = s0 ⇝ v0 where v0 ̸= k0:
In this case we obtain

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K
= ⟨ DEJ E K ∥ def f (x) { { suspend { k0 ⇒ run(v0) { s0 } } }; s ⟩

and
DMJ ⟨ E, f 7→ { E, (x k0) ⇒ t0 } ∥ t ⟩ K
= ⟨ DEJ E K, f 7→ DV J { E, (x k0) ⇒ t0 } K ∥ s ⟩
= ⟨ DEJ E K, f 7→ { DEJ E K, (x) ⇒ suspend { k0 ⇒ run(v0) { s0 } } }; ∥ s ⟩

By rule (def-0) we thus have

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K → DMJ ⟨ E, f 7→ { E, (x k0) ⇒ t0 } ∥ t ⟩ K

Case DJ t K = s ⇝ k and DJ t0 K = s0 ⇝ k0:
We have

DMJ ⟨ E, f 7→ { E, (x k0) ⇒ t0 } ∥ t ⟩ K
= ⟨ DEJ E K.rm(k), f 7→ DV J { E, (x k0) ⇒ t0 } K ∥ s ∥ DKJ E(k) K ⟩
= ⟨ DEJ E K.rm(k), f 7→ { DEJ E K, (x) ⇒ s0 ∥ s ∥ DKJ E(k) K ⟩

We distinguish whether k ∈ FV(def f (x) { s0 }; s) or not.
If so, we use DEJ E K(k) = DV J E(k) K = DKJ E(k) K and obtain by rule (run) that

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K
= ⟨ DEJ E K ∥ run(k) { def f (x) { s0 }; s } ⟩
→ ⟨ DEJ E K ∥ def f (x) { s0 }; s ∥ DKJ E(k) K ⟩

Using rule (def-1) hence gives us

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K
→2 ⟨ DEJ E K, f 7→ { DEJ E K, (x) ⇒ s0 } ∥ s ∥ DKJ E(k) K ⟩

Apart from the binding for k in the environment this is just what we want and since k is not
free in s we can identify the two configurations by weakening.
If k ̸∈ FV(def f (x) { s0 }; s), we have

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K
= ⟨ DEJ E K.rm(k) ∥ def f (x) { s0 }; s ∥ DKJ E(k) K ⟩

TR 2023

50

Using rule (def-1) hence gives us

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K
→ ⟨ DEJ E K.rm(k), f 7→ { DEJ E K.rm(k), (x) ⇒ s0 } ∥ s ∥ DKJ E(k) K ⟩

Up to the missing mapping for k in the definition of f this is just what we want and since k
is not free in s0 we can identify the two definitions of f by weakening and hence also the
configurations.

Case DJ t K = s ⇝ k and DJ t0 K = s0 ⇝ •:
We have

DMJ ⟨ E, f 7→ { E, (x k0) ⇒ t0 } ∥ t ⟩ K
= ⟨ DEJ E K.rm(k), f 7→ DV J { E, (x k0) ⇒ t0 } K ∥ s ∥ DKJ E(k) K ⟩
= ⟨ DEJ E K.rm(k), f 7→ { DEJ E K, (x) ⇒ suspend { k0 ⇒ s0 } ∥ s ∥ DKJ E(k) K ⟩

We distinguish whether k ∈ FV(def f (x) { suspend { k0 ⇒ s0 } }; s) or not.
If so, we use DEJ E K(k) = DV J E(k) K = DKJ E(k) K and obtain by rule (run) that

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K
= ⟨ DEJ E K ∥ run(k) { def f (x) { suspend { k0 ⇒ s0 } }; s } ⟩
→ ⟨ DEJ E K ∥ def f (x) { suspend { k0 ⇒ s0 } }; s ∥ DKJ E(k) K ⟩

Using rule (def-1) hence gives us

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K
→2 ⟨ DEJ E K, f 7→ { DEJ E K, (x) ⇒ suspend { k0 ⇒ s0 } } ∥ s ∥ DKJ E(k) K ⟩

Apart from the binding for k in the environment this is just what we want and since k is not
free in s we can identify the two configurations by weakening.
If k ̸∈ FV(def f (x) { suspend { k0 ⇒ s0 } }; s), we have

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K
= ⟨ DEJ E K.rm(k) ∥ def f (x) { suspend { k0 ⇒ s0 } }; s ∥ DKJ E(k) K ⟩

Using rule (def-1) hence gives us

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K
→ ⟨ DEJ E K.rm(k), f 7→ { DEJ E K.rm(k), (x) ⇒ suspend { k0 ⇒ s0 } } ∥ s ∥ DKJ E(k) K ⟩

Up to the missing mapping for k in the definition of f this is just what we want and since k
is not free in s0 we can identify the two definitions of f by weakening and hence also the
configurations.

Case DJ t K = s ⇝ k and DJ t0 K = s0 ⇝ v0 where v0 ̸= k0:
We have

DMJ ⟨ E, f 7→ { E, (x k0) ⇒ t0 } ∥ t ⟩ K
= ⟨ DEJ E K.rm(k), f 7→ DV J { E, (x k0) ⇒ t0 } K ∥ s ∥ DKJ E(k) K ⟩
= ⟨ DEJ E K.rm(k), f 7→ { DEJ E K, (x) ⇒ suspend { k0 ⇒ run(v0) { s0 } } ∥ s ∥ DKJ E(k) K ⟩

We distinguish whether k ∈ FV(def f (x) { suspend { k0 ⇒ run(v0) { s0 } } }; s) or not.
If so, we use DEJ E K(k) = DV J E(k) K = DKJ E(k) K and obtain by rule (run) that

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K
= ⟨ DEJ E K ∥ run(k) { def f (x) { suspend { k0 ⇒ run(v0) { s0 } } }; s } ⟩
→ ⟨ DEJ E K ∥ def f (x) { suspend { k0 ⇒ run(v0) { s0 } } }; s ∥ DKJ E(k) K ⟩

51

Using rule (def-1) hence gives us

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K
→2 ⟨ DEJ E K, f 7→ { DEJ E K, (x) ⇒ suspend { k0 ⇒ run(v0) { s0 } } } ∥ s ∥ DKJ E(k) K ⟩

Apart from the binding for k in the environment this is just what we want and since k is not
free in s we can identify the two configurations by weakening.
If k ̸∈ FV(def f (x) { suspend { k0 ⇒ run(v0) { s0 } } }; s), we have

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K
= ⟨ DEJ E K.rm(k) ∥ def f (x) { suspend { k0 ⇒ run(v0) { s0 } } }; s ∥ DKJ E(k) K ⟩

Using rule (def-1) hence gives us

DMJ ⟨ E ∥ let f (x k0) { t0 }; t ⟩ K
→ ⟨ DEJ E K.rm(k), f 7→ { DEJ E K.rm(k), (x) ⇒ suspend { k0 ⇒ run(v0) { s0 } } } ∥ s ∥ DKJ E(k) K ⟩

Up to the missing mapping for k in the definition of f this is just what we want and since k
is not free in s0 we can identify the two definitions of f by weakening and hence also the
configurations.

case (cnt)
We have

⟨ E ∥ cnt k0(x) { t0 }; t ⟩ → ⟨ E, k0 7→ { E, (x) ⇒ t0 } ∥ t ⟩

For the translations of the machine configurations we distinguish the cases of the translation
of the left-hand term.

Case DJ t K = s ⇝ • and DJ t0 K = s0 ⇝ •:
In this case we obtain

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
= ⟨ DEJ E K ∥ process k0(x) { s0 }; s ⟩

and
DMJ ⟨ E, k0 7→ { E, (x) ⇒ t0 } ∥ t ⟩ K
= ⟨ DEJ E K, k0 7→ DV J { E, (x) ⇒ t0 } K ∥ s ⟩
= ⟨ DEJ E K, k0 7→ { DEJ E K, (x) ⇒ s0 } ∥ s ⟩

By rule (proc-0) we thus have

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K → DMJ ⟨ E, k0 7→ { E, (x) ⇒ t0 } ∥ t ⟩ K

Case DJ t K = s ⇝ • and DJ t0 K = s0 ⇝ x:
In this case we obtain

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
= ⟨ DEJ E K ∥ process k0(x) { run(x) { s0 } }; s ⟩

and
DMJ ⟨ E, k0 7→ { E, (x) ⇒ t0 } ∥ t ⟩ K
= ⟨ DEJ E K, k0 7→ DV J { E, (x) ⇒ t0 } K ∥ s ⟩
= ⟨ DEJ E K, k0 7→ { DEJ E K, (x) ⇒ run(x) { s0 } } ∥ s ⟩

TR 2023

52

By rule (proc-0) we thus have

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K → DMJ ⟨ E, k0 7→ { E, (x) ⇒ t0 } ∥ t ⟩ K

Case DJ t K = s ⇝ • and DJ t0 K = s0 ⇝ v0 where v0 ̸= x:
We have

DMJ ⟨ E, k0 7→ { E, (x) ⇒ t0 } ∥ t ⟩ K
= ⟨ DEJ E K, k0 7→ DV J { E, (x) ⇒ t0 } K ∥ s ⟩
= ⟨ DEJ E K, k0 7→ { DEJ E K.rm(v0), (x) ⇒ s0 } :: DKJ E(v0) K ∥ s ⟩

We distinguish whether v0 ∈ FV(val x = suspend { k0 ⇒ s }; s0) or not.
If so, we use DEJ E K(v0) = DV J E(v0) K = DKJ E(v0) K and obtain by rule (run) that

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
= ⟨ DEJ E K ∥ run(v0) { val x = suspend { k0 ⇒ s }; s0 } ⟩
→ ⟨ DEJ E K ∥ val x = suspend { k0 ⇒ s }; s0 ∥ DKJ E(v0) K ⟩

Using rules (push) and (sus) hence gives us

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
→2 ⟨ DEJ E K ∥ suspend { k0 ⇒ s } ∥ { DEJ E K, (x) ⇒ s0 } :: DKJ E(v0) K ⟩
→ ⟨ DEJ E K, k0 7→ { DEJ E K, (x) ⇒ s0 } :: DKJ E(v0) K ∥ s ⟩

Up to the additional mapping for v0 in the definition of k0 this is just what we want and
since v0 is not free in s0 we can identify the two definitions of k0 by weakening and hence
also the configurations.
If v0 ̸∈ FV(val x = suspend { k0 ⇒ s }; s0), we have

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
= ⟨ DEJ E K.rm(v0) ∥ val x = suspend { k0 ⇒ s }; s0 ∥ DKJ E(v0) K ⟩

Using rules (push) and (sus) hence gives us

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
→ ⟨ DEJ E K.rm(v0) ∥ suspend { k0 ⇒ s } ∥ { DEJ E K.rm(v0), (x) ⇒ s0 } :: DKJ E(v0) K ⟩
→ ⟨ DEJ E K.rm(v0), k0 7→ { DEJ E K.rm(v0), (x) ⇒ s0 } :: DKJ E(v0) K ∥ s ⟩

Apart from the missing binding for v0 in the environment this is just what we want and since
v0 is not free in s we can identify the two configurations by weakening.

Case DJ t K = s ⇝ k with k ̸= k0 and DJ t0 K = s0 ⇝ •:
In this case we obtain

DMJ ⟨ E, k0 7→ { E, (x) ⇒ t0 } ∥ t ⟩ K
= ⟨ DEJ E K.rm(k), k0 7→ DV J { E, (x) ⇒ t0 } K ∥ s ∥ DKJ E(k) K ⟩
= ⟨ DEJ E K.rm(k), k0 7→ { DEJ E K, (x) ⇒ s0 } ∥ s ∥ DKJ E(k) K ⟩

We distinguish whether k ∈ FV(process k0(x) { s0 }; s) or not.
If so, we use DEJ E K(k) = DV J E(k) K = DKJ E(k) K and obtain by rule (run) that

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
= ⟨ DEJ E K ∥ run(k) { process k0(x) { s0 }; s } ⟩
→ ⟨ DEJ E K ∥ process k0(x) { s0 }; s ∥ DKJ E(k) K ⟩

53

By rule (proc-1) we thus have

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
→2 ⟨ DEJ E K, k0 7→ { DEJ E K, (x) ⇒ s0 } ∥ s ∥ DKJ E(k) K ⟩

Apart from the binding for k in the environment this is just what we want and since k is not
free in s we can identify the two configurations by weakening.
If k ̸∈ FV(process k0(x) { s0 }; s), we have

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
= ⟨ DEJ E K.rm(k) ∥ process k0(x) { s0 }; s ∥ DKJ E(k) K ⟩

By rule (proc-1) we thus have

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
→ ⟨ DEJ E K.rm(k), k0 7→ { DEJ E K.rm(k), (x) ⇒ s0 } ∥ s ∥ DKJ E(k) K ⟩

Up to the missing mapping for k in the definition of k0 this is just what we want and since k
is not free in s0 we can identify the two definitions of k0 by weakening and hence also the
configurations.

Case DJ t K = s ⇝ k with k ̸= k0 and DJ t0 K = s0 ⇝ x:
In this case we obtain

DMJ ⟨ E, k0 7→ { E, (x) ⇒ t0 } ∥ t ⟩ K
= ⟨ DEJ E K.rm(k), k0 7→ DV J { E, (x) ⇒ t0 } K ∥ s ∥ DKJ E(k) K ⟩
= ⟨ DEJ E K.rm(k), k0 7→ { DEJ E K, (x) ⇒ run(x) { s0 } } ∥ s ∥ DKJ E(k) K ⟩

We distinguish whether k ∈ FV(process k0(x) { run(x) { s0 } }; s) or not.
If so, we use DEJ E K(k) = DV J E(k) K = DKJ E(k) K and obtain by rule (run) that

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
= ⟨ DEJ E K ∥ run(k) { process k0(x) { run(x) { s0 } }; s } ⟩
→ ⟨ DEJ E K ∥ process k0(x) { run(x) { s0 } }; s ∥ DKJ E(k) K ⟩

By rule (proc-1) we thus have

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
→2 ⟨ DEJ E K, k0 7→ { DEJ E K, (x) ⇒ run(x) { s0 } } ∥ s ∥ DKJ E(k) K ⟩

Apart from the binding for k in the environment this is just what we want and since k is not
free in s we can identify the two configurations by weakening.
If k ̸∈ FV(process k0(x) { run(x) { s0 } }; s), we have

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
= ⟨ DEJ E K.rm(k) ∥ process k0(x) { run(x) { s0 } }; s ∥ DKJ E(k) K ⟩

By rule (proc-1) we thus have

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
→ ⟨ DEJ E K.rm(k), k0 7→ { DEJ E K.rm(k), (x) ⇒ run(x) { s0 } } ∥ s ∥ DKJ E(k) K ⟩

Up to the missing mapping for k in the definition of k0 this is just what we want and since k
is not free in s0 we can identify the two definitions of k0 by weakening and hence also the

TR 2023

54

configurations.

Case DJ t K = s ⇝ k with k ̸= k0 and DJ t0 K = s0 ⇝ v0 where v0 ̸= x:
We have

DMJ ⟨ E, k0 7→ { E, (x) ⇒ t0 } ∥ t ⟩ K
= ⟨ DEJ E K.rm(k), k0 7→ DV J { E, (x) ⇒ t0 } K ∥ s ∥ DKJ E(k) K ⟩
= ⟨ DEJ E K.rm(k), k0 7→ { DEJ E K.rm(v0), (x) ⇒ s0 } :: DKJ E(v0) K ∥ s ∥ DKJ E(k) K ⟩

We distinguish whether v0 ∈ FV(val x = suspend { k0 ⇒ run(k) { s } }; s0) or not.
If so, we use DEJ E K(v0) = DV J E(v0) K = DKJ E(v0) K and obtain by rule (run) that

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
= ⟨ DEJ E K ∥ run(v0) { val x = suspend { k0 ⇒ run(k) { s } }; s0 } ⟩
→ ⟨ DEJ E K ∥ val x = suspend { k0 ⇒ run(k) { s } }; s0 ∥ DKJ E(v0) K ⟩

Using rules (push), (sus) and (run) hence gives us

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
→2 ⟨ DEJ E K ∥ suspend { k0 ⇒ run(k) { s } } ∥ { DEJ E K, (x) ⇒ s0 } :: DKJ E(v0) K ⟩
→ ⟨ DEJ E K, k0 7→ { DEJ E K, (x) ⇒ s0 } :: DKJ E(v0) K ∥ run(k) { s } ⟩
→ ⟨ DEJ E K, k0 7→ { DEJ E K, (x) ⇒ s0 } :: DKJ E(v0) K ∥ s ∥ DKJ E(k) K ⟩

Up to the additional mapping for v0 in the definition of k0 and the additional binding for k
in the environment this is just what we want and since v0 is not free in s0 and k is not free
in s we can identify the two definitions of k0 by weakening and hence also the configurations.
If v0 ̸∈ FV(val x = suspend { k0 ⇒ run(k) { s } }; s0), we have

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
= ⟨ DEJ E K.rm(v0) ∥ val x = suspend { k0 ⇒ run(k) { s } }; s0 ∥ DKJ E(v0) K ⟩

Using rules (push), (sus) and (run) hence gives us

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
→ ⟨ DEJ E K.rm(v0) ∥ suspend { k0 ⇒ run(k) { s } } ∥ { DEJ E K.rm(v0), (x) ⇒ s0 } :: DKJ E(v0) K ⟩
→ ⟨ DEJ E K.rm(v0), k0 7→ { DEJ E K.rm(v0), (x) ⇒ s0 } :: DKJ E(v0) K ∥ run(k) { s } ⟩
→ ⟨ DEJ E K.rm(v0), k0 7→ { DEJ E K.rm(v0), (x) ⇒ s0 } :: DKJ E(v0) K ∥ s ∥ DKJ E(k) K ⟩

Apart from the missing binding for v0 and the additional binding for k in the environment
this is just what we want and since v0 and k are not free in s we can identify the two
configurations by weakening.

Case DJ t K = s ⇝ k0 and DJ t0 K = s0 ⇝ •:
In this case we obtain

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
= ⟨ DEJ E K ∥ process k0(x) { s0 }; run(k0) { s } ⟩

and
DMJ ⟨ E, k0 7→ { E, (x) ⇒ t0 } ∥ t ⟩ K
= ⟨ DEJ E K ∥ s ∥ DKJ { E, (x) ⇒ t0 } K ⟩
= ⟨ DEJ E K ∥ s ∥ { DEJ E K, (x) ⇒ s0} ⟩

55

By rules (proc-0) and (run) we have

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
→ ⟨ DEJ E K, k0 7→ { DEJ E K, (x) ⇒ s0 } ∥ run(k0) { s } ⟩
→ ⟨ DEJ E K, k0 7→ { DEJ E K, (x) ⇒ s0 } ∥ s ∥ { DEJ E K, (x) ⇒ s0 } ⟩

Up to the additional binding for k0 in the environment this is just what we want and since
k0 is not free in s we can identify the two configurations by weakening.

Case DJ t K = s ⇝ k0 and DJ t0 K = s0 ⇝ x:
In this case we obtain

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
= ⟨ DEJ E K ∥ process k0(x) { run(x) { s0 } }; run(k0) { s } ⟩

and
DMJ ⟨ E, k0 7→ { E, (x) ⇒ t0 } ∥ t ⟩ K
= ⟨ DEJ E K ∥ s ∥ DKJ { E, (x) ⇒ t0 } K ⟩
= ⟨ DEJ E K ∥ s ∥ { DEJ E K, (x) ⇒ run(x) { s0 } } ⟩

By rules (proc-0) and (run) we have

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
→ ⟨ DEJ E K, k0 7→ { DEJ E K, (x) ⇒ run(x) { s0 } } ∥ run(k0) { s } ⟩
→ ⟨ DEJ E K, k0 7→ { DEJ E K, (x) ⇒ run(k) { s0 } } ∥ s ∥ { DEJ E K, (x) ⇒ run(x) { s0 } } ⟩

Up to the additional binding for k0 in the environment this is just what we want and since
k0 is not free in s we can identify the two configurations by weakening.

Case DJ t K = s ⇝ k0 and DJ t0 K = s0 ⇝ v0 with v0 ̸= x:
We have

DMJ ⟨ E, k0 7→ { E, (x) ⇒ t0 } ∥ t ⟩ K
= ⟨ DEJ E K ∥ s ∥ DKJ { E, (x) ⇒ t0 } K ⟩
= ⟨ DEJ E K ∥ s ∥ { DEJ E K.rm(v0), (x) ⇒ s0 } :: DKJ E(v0) K ⟩

We distinguish whether v0 ∈ FV(val x = s; s0) or not.
If so, we use DEJ E K(v0) = DV J E(v0) K = DKJ E(v0) K and obtain by rule (run) that

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
= ⟨ DEJ E K ∥ run(v0) { val x = s; s0 } ⟩
→ ⟨ DEJ E K ∥ val x = s; s0 ∥ DKJ E(v0) K ⟩

By rule (push) we thus have

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
→2 ⟨ DEJ E K ∥ s ∥ { DEJ E K, (x) ⇒ s0 } :: DKJ E(v0) K ⟩

Up to the additional binding for v0 in the definition of the first stack frame this is just what
we want and since v0 is not free in s0 we can identify the two configurations by weakening.
If v0 ̸∈ FV(val x = s; s0), we have

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
= ⟨ DEJ E K.rm(v0) ∥ val x = s; s0 ∥ DKJ E(v0) K ⟩

TR 2023

56

By rule (push) we thus have

DMJ ⟨ E ∥ cnt k0(x) { t0 }; t ⟩ K
→ ⟨ DEJ E K.rm(v0) ∥ s ∥ { DEJ E K.rm(v0), (x) ⇒ s0 } :: DKJ E(v0) K ⟩

Up to the missing binding for v0 in the environment this is just what we want and since v0 is
not free in s we can identify the two configurations by weakening.

case (iftruv)
We have

⟨ E, v 7→ true ∥ if v then t1 else t2 ⟩ → ⟨ E, v 7→ true ∥ t1 ⟩

We distinguish cases according to the translation of t1 and t2.

Case DJ t1 K = s1 ⇝ k and DJ t2 K = s2 ⇝ k:
In this case we have

DJ if v then t1 else t2 K = if v then s1 else s2 ⇝ k

and

DMJ ⟨ E, v 7→ true ∥ t1 ⟩ K = ⟨ DEJ E K.rm(k), v 7→ true ∥ s1 ∥ DKJ E(k) K ⟩

By rule (iftruv-1) we obtain

DMJ ⟨ E, v 7→ true ∥ if v then t1 else t2 ⟩ K
= ⟨ DEJ E K.rm(k), v 7→ true ∥ if v then s1 else s2 ∥ DKJ E(k) K ⟩
→ ⟨ DEJ E K.rm(k), v 7→ true ∥ s1 ∥ DKJ E(k) K ⟩

which is exactly what we want.

Case DJ t1 K = s1 ⇝ • and DJ t2 K = s2 ⇝ •:
In this case we have

DJ if v then t1 else t2 K = if v then s1 else s2 ⇝ •

and
DMJ ⟨ E, v 7→ true ∥ t1 ⟩ K = ⟨ DEJ E K, v 7→ true ∥ s1 ⟩

By rule (iftruv-0) we obtain

DMJ ⟨ E, v 7→ true ∥ if v then t1 else t2 ⟩ K
= ⟨ DEJ E K, v 7→ true ∥ if v then s1 else s2 ⟩
→ ⟨ DEJ E K, v 7→ true ∥ s1 ⟩

which is exactly what we want.

Case DJ t1 K = s1 ⇝ • and DJ t2 K = s2 ⇝ k:
In this case we have

DJ if v then t1 else t2 K = if v then suspend { k ⇒ s1 } else s2 ⇝ k

and
DMJ ⟨ E, v 7→ true ∥ t1 ⟩ K = ⟨ DEJ E K, v 7→ true ∥ s1 ⟩

57

By rules (sus) and (iftruv-1) we obtain using DKJ E(k) K = DV J E(k) K = DEJ E K(k) that

DMJ ⟨ E, v 7→ true ∥ if v then t1 else t2 ⟩ K
= ⟨ DEJ E K.rm(k), v 7→ true ∥ if v then suspend { k ⇒ s1 } else s2 ∥ DKJ E(k) K ⟩
→ ⟨ DEJ E K.rm(k), v 7→ true ∥ suspend { k ⇒ s1 } ∥ DKJ E(k) K ⟩
→ ⟨ DEJ E K.rm(k), v 7→ true, k 7→ DEJ E K(k) ∥ s1 ⟩

which is exactly what we want since DEJ E K.rm(k), k 7→ DEJ E K(k) = DEJ E K.

Case DJ t1 K = s1 ⇝ k and DJ t2 K = s2 ⇝ •:
In this case we have

DJ if v then t1 else t2 K = if v then s1 else suspend { k ⇒ s2 } ⇝ k

and

DMJ ⟨ E, v 7→ true ∥ t1 ⟩ K = ⟨ DEJ E K.rm(k), v 7→ true ∥ s1 ∥ DKJ E(k) K ⟩

By rule (iftruv-1) we obtain

DMJ ⟨ E, v 7→ true ∥ if v then t1 else t2 ⟩ K
= ⟨ DEJ E K.rm(k), v 7→ true ∥ if v then s1 else suspend { k ⇒ s2 } ∥ DKJ E(k) K ⟩
→ ⟨ DEJ E K.rm(k), v 7→ true ∥ s1 ∥ DKJ E(k) K ⟩

which is exactly what we want.

Case DJ t1 K = s1 ⇝ k1 and DJ t2 K = s2 ⇝ k2 and k1 ̸= k2:
In this case we have

DJ if v then t1 else t2 K = if v then suspend { k2 ⇒ run(k1) { s1 } } else s2 ⇝ k2

and

DMJ ⟨ E, v 7→ true ∥ t1 ⟩ K = ⟨ DEJ E K.rm(k1), v 7→ true ∥ s1 ∥ DKJ E(k1) K ⟩

By rules (iftruv-1), (sus) and (run) we obtain using DKJ E(ki) K = DV J E(ki) K = DEJ E K(ki)
for i = 1, 2 that

DMJ ⟨ E, v 7→ true ∥ if v then t1 else t2 ⟩ K
= ⟨ DEJ E K.rm(k2), v 7→ true ∥ if v then suspend { k2 ⇒ run(k1) { s1 } } else s2 ∥ DKJ E(k2) K ⟩
→ ⟨ DEJ E K.rm(k2), v 7→ true ∥ suspend { k2 ⇒ run(k1) { s1 } } ∥ DKJ E(k2) K ⟩
→ ⟨ DEJ E K.rm(k2), v 7→ true, k2 7→ DEJ E K(k2) ∥ run(k1) { s1 } ⟩
→ ⟨ DEJ E K, v 7→ true ∥ s1 ∥ DKJ E(k1) K ⟩

since DEJ E K.rm(k2), k2 7→ DEJ E K(k2) = DEJ E K. Up to the additional binding for k1 in
the environment this is just what we want and since k1 is not free in s1 we can identify the
two configurations by weakening.

case (iftrub)
We have

⟨ E ∥ if true then t1 else t2 ⟩ → ⟨ E ∥ t1 ⟩

We distinguish cases according to the translation of t1 and t2.

TR 2023

58

Case DJ t1 K = s1 ⇝ k and DJ t2 K = s2 ⇝ k:
In this case we have

DJ if true then t1 else t2 K = if true then s1 else s2 ⇝ k

and
DMJ ⟨ E ∥ t1 ⟩ K = ⟨ DEJ E K.rm(k) ∥ s1 ∥ DKJ E(k) K ⟩

By rule (iftrub-1) we obtain

DMJ ⟨ E ∥ if true then t1 else t2 ⟩ K
= ⟨ DEJ E K.rm(k) ∥ if true then s1 else s2 ∥ DKJ E(k) K ⟩
→ ⟨ DEJ E K.rm(k) ∥ s1 ∥ DKJ E(k) K ⟩

which is exactly what we want.

Case DJ t1 K = s1 ⇝ • and DJ t2 K = s2 ⇝ •:
In this case we have

DJ if true then t1 else t2 K = if true then s1 else s2 ⇝ •

and
DMJ ⟨ E ∥ t1 ⟩ K = ⟨ DEJ E K ∥ s1 ⟩

By rule (iftrub-0) we obtain

DMJ ⟨ E ∥ if true then t1 else t2 ⟩ K
= ⟨ DEJ E K ∥ if true then s1 else s2 ⟩
→ ⟨ DEJ E K ∥ s1 ⟩

which is exactly what we want.

Case DJ t1 K = s1 ⇝ • and DJ t2 K = s2 ⇝ k:
In this case we have

DJ if true then t1 else t2 K = if true then suspend { k ⇒ s1 } else s2 ⇝ k

and
DMJ ⟨ E ∥ t1 ⟩ K = ⟨ DEJ E K ∥ s1 ⟩

By rules (sus) and (iftrub-1) we obtain using DKJ E(k) K = DV J E(k) K = DEJ E K(k) that

DMJ ⟨ E ∥ if true then t1 else t2 ⟩ K
= ⟨ DEJ E K.rm(k) ∥ if true then suspend { k ⇒ s1 } else s2 ∥ DKJ E(k) K ⟩
→ ⟨ DEJ E K.rm(k) ∥ suspend { k ⇒ s1 } ∥ DKJ E(k) K ⟩
→ ⟨ DEJ E K.rm(k), k 7→ DEJ E K(k) ∥ s1 ⟩

which is exactly what we want since DEJ E K.rm(k), k 7→ DEJ E K(k) = DEJ E K.

Case DJ t1 K = s1 ⇝ k and DJ t2 K = s2 ⇝ •:
In this case we have

DJ if true then t1 else t2 K = if true then s1 else suspend { k ⇒ s2 } ⇝ k

59

and
DMJ ⟨ E ∥ t1 ⟩ K = ⟨ DEJ E K.rm(k) ∥ s1 ∥ DKJ E(k) K ⟩

By rule (iftrub-1) we obtain

DMJ ⟨ E ∥ if true then t1 else t2 ⟩ K
= ⟨ DEJ E K.rm(k) ∥ if true then s1 else suspend { k ⇒ s2 } ∥ DKJ E(k) K ⟩
→ ⟨ DEJ E K.rm(k) ∥ s1 ∥ DKJ E(k) K ⟩

which is exactly what we want.

Case DJ t1 K = s1 ⇝ k1 and DJ t2 K = s2 ⇝ k2 and k1 ̸= k2:
In this case we have

DJ if true then t1 else t2 K = if true then suspend { k2 ⇒ run(k1) { s1 } } else s2 ⇝ k2

and
DMJ ⟨ E ∥ t1 ⟩ K = ⟨ DEJ E K.rm(k1) ∥ s1 ∥ DKJ E(k1) K ⟩

By rules (iftrub-1), (sus) and (run) we obtain using DKJ E(ki) K = DV J E(ki) K = DEJ E K(ki)
for i = 1, 2 that

DMJ ⟨ E ∥ if true then t1 else t2 ⟩ K
= ⟨ DEJ E K.rm(k2) ∥ if true then suspend { k2 ⇒ run(k1) { s1 } } else s2 ∥ DKJ E(k2) K ⟩
→ ⟨ DEJ E K.rm(k2) ∥ suspend { k2 ⇒ run(k1) { s1 } } ∥ DKJ E(k2) K ⟩
→ ⟨ DEJ E K.rm(k2), k2 7→ DEJ E K(k2) ∥ run(k1) { s1 } ⟩
→ ⟨ DEJ E K ∥ s1 ∥ DKJ E(k1) K ⟩

since DEJ E K.rm(k2), k2 7→ DEJ E K(k2) = DEJ E K. Up to the additional binding for k1 in
the environment this is just what we want and since k1 is not free in s1 we can identify the
two configurations by weakening.

case (ifflsv)
We have

⟨ E, v 7→ false ∥ if v then t1 else t2 ⟩ → ⟨ E, v 7→ false ∥ t2 ⟩

We distinguish cases according to the translation of t1 and t2.

Case DJ t1 K = s1 ⇝ k and DJ t2 K = s2 ⇝ k:
In this case we have

DJ if v then t1 else t2 K = if v then s1 else s2 ⇝ k

and

DMJ ⟨ E, v 7→ false ∥ t2 ⟩ K = ⟨ DEJ E K.rm(k), v 7→ false ∥ s2 ∥ DKJ E(k) K ⟩

By rule (ifflsv-1) we obtain

DMJ ⟨ E, v 7→ false ∥ if v then t1 else t2 ⟩ K
= ⟨ DEJ E K.rm(k), v 7→ false ∥ if v then s1 else s2 ∥ DKJ E(k) K ⟩
→ ⟨ DEJ E K.rm(k), v 7→ false ∥ s2 ∥ DKJ E(k) K ⟩

TR 2023

60

which is exactly what we want.

Case DJ t1 K = s1 ⇝ • and DJ t2 K = s2 ⇝ •:
In this case we have

DJ if v then t1 else t2 K = if v then s1 else s2 ⇝ •

and
DMJ ⟨ E, v 7→ false ∥ t2 ⟩ K = ⟨ DEJ E K, v 7→ false ∥ s2 ⟩

By rule (ifflsv-0) we obtain

DMJ ⟨ E, v 7→ false ∥ if v then t1 else t2 ⟩ K
= ⟨ DEJ E K, v 7→ false ∥ if v then s1 else s2 ⟩
→ ⟨ DEJ E K, v 7→ false ∥ s2 ⟩

which is exactly what we want.

Case DJ t1 K = s1 ⇝ • and DJ t2 K = s2 ⇝ k:
In this case we have

DJ if v then t1 else t2 K = if v then suspend { k ⇒ s1 } else s2 ⇝ k

and

DMJ ⟨ E, v 7→ false ∥ t2 ⟩ K = ⟨ DEJ E K.rm(k), v 7→ false ∥ s2 ∥ DKJ E(k) K ⟩

By rule (ifflsv-1) we obtain

DMJ ⟨ E, v 7→ false ∥ if v then t1 else t2 ⟩ K
= ⟨ DEJ E K.rm(k), v 7→ false ∥ if v then suspend { k ⇒ s1 } else s2 ∥ DKJ E(k) K ⟩
→ ⟨ DEJ E K.rm(k), v 7→ false ∥ s2 ∥ DKJ E(k) K ⟩

which is exactly what we want.

Case DJ t1 K = s1 ⇝ k and DJ t2 K = s2 ⇝ •:
In this case we have

DJ if v then t1 else t2 K = if v then s1 else suspend { k ⇒ s2 } ⇝ k

and
DMJ ⟨ E, v 7→ false ∥ t2 ⟩ K = ⟨ DEJ E K, v 7→ false ∥ s2 ⟩

By rules (sus) and (ifflsv-1) we obtain using DKJ E(k) K = DV J E(k) K = DEJ E K(k) that

DMJ ⟨ E, v 7→ false ∥ if v then t1 else t2 ⟩ K
= ⟨ DEJ E K.rm(k), v 7→ false ∥ if v then s1 else suspend { k ⇒ s2 } ∥ DKJ E(k) K ⟩
→ ⟨ DEJ E K.rm(k), v 7→ false ∥ suspend { k ⇒ s2 } ∥ DKJ E(k) K ⟩
→ ⟨ DEJ E K.rm(k), v 7→ false, k 7→ DEJ E K(k) ∥ s2 ⟩

which is exactly what we want since DEJ E K.rm(k), k 7→ DEJ E K(k) = DEJ E K.

Case DJ t1 K = s1 ⇝ k1 and DJ t2 K = s2 ⇝ k2 and k1 ̸= k2:
In this case we have

DJ if v then t1 else t2 K = if v then suspend { k2 ⇒ run(k1) { s1 } } else s2 ⇝ k2

61

and

DMJ ⟨ E, v 7→ false ∥ t2 ⟩ K = ⟨ DEJ E K.rm(k2), v 7→ false ∥ s2 ∥ DKJ E(k2) K ⟩

By rule (ifflsv-1) we obtain

DMJ ⟨ E, v 7→ false ∥ if v then t1 else t2 ⟩ K
= ⟨ DEJ E K.rm(k2), v 7→ false ∥ if v then suspend { k2 ⇒ run(k1) { s1 } } else s2 ∥ DKJ E(k2) K ⟩
→ ⟨ DEJ E K.rm(k2), v 7→ false ∥ s2 ∥ DKJ E(k2) K ⟩

which is exactly what we want.

case (ifflsb)
We have

⟨ E ∥ if false then t1 else t2 ⟩ → ⟨ E ∥ t2 ⟩

We distinguish cases according to the translation of t1 and t2.

Case DJ t1 K = s1 ⇝ k and DJ t2 K = s2 ⇝ k:
In this case we have

DJ if false then t1 else t2 K = if false then s1 else s2 ⇝ k

and
DMJ ⟨ E ∥ t2 ⟩ K = ⟨ DEJ E K.rm(k) ∥ s2 ∥ DKJ E(k) K ⟩

By rule (ifflsb-1) we obtain

DMJ ⟨ E ∥ if false then t1 else t2 ⟩ K
= ⟨ DEJ E K.rm(k) ∥ if false then s1 else s2 ∥ DKJ E(k) K ⟩
→ ⟨ DEJ E K.rm(k) ∥ s2 ∥ DKJ E(k) K ⟩

which is exactly what we want.

Case DJ t1 K = s1 ⇝ • and DJ t2 K = s2 ⇝ •:
In this case we have

DJ if false then t1 else t2 K = if false then s1 else s2 ⇝ •

and
DMJ ⟨ E ∥ t2 ⟩ K = ⟨ DEJ E K ∥ s2 ⟩

By rule (ifflsb-0) we obtain

DMJ ⟨ E ∥ if false then t1 else t2 ⟩ K
= ⟨ DEJ E K ∥ if false then s1 else s2 ⟩
→ ⟨ DEJ E K ∥ s2 ⟩

which is exactly what we want.

Case DJ t1 K = s1 ⇝ • and DJ t2 K = s2 ⇝ k:
In this case we have

DJ if false then t1 else t2 K = if false then suspend { k ⇒ s1 } else s2 ⇝ k

TR 2023

62

and
DMJ ⟨ E ∥ t2 ⟩ K = ⟨ DEJ E K.rm(k) ∥ s2 ∥ DKJ E(k) K ⟩

By rule (ifflsb-1) we obtain

DMJ ⟨ E ∥ if false then t1 else t2 ⟩ K
= ⟨ DEJ E K.rm(k) ∥ if false then suspend { k ⇒ s1 } else s2 ∥ DKJ E(k) K ⟩
→ ⟨ DEJ E K.rm(k) ∥ s2 ∥ DKJ E(k) K ⟩

which is exactly what we want.

Case DJ t1 K = s1 ⇝ k and DJ t2 K = s2 ⇝ •:
In this case we have

DJ if false then t1 else t2 K = if false then s1 else suspend { k ⇒ s2 } ⇝ k

and
DMJ ⟨ E ∥ t2 ⟩ K = ⟨ DEJ E K ∥ s2 ⟩

By rules (sus) and (ifflsb-1) we obtain using DKJ E(k) K = DV J E(k) K = DEJ E K(k) that

DMJ ⟨ E ∥ if false then t1 else t2 ⟩ K
= ⟨ DEJ E K.rm(k) ∥ if false then s1 else suspend { k ⇒ s2 } ∥ DKJ E(k) K ⟩
→ ⟨ DEJ E K.rm(k) ∥ suspend { k ⇒ s2 } ∥ DKJ E(k) K ⟩
→ ⟨ DEJ E K.rm(k), k 7→ DEJ E K(k) ∥ s2 ⟩

which is exactly what we want since DEJ E K.rm(k), k 7→ DEJ E K(k) = DEJ E K.

Case DJ t1 K = s1 ⇝ k1 and DJ t2 K = s2 ⇝ k2 and k1 ̸= k2:
In this case we have

DJ if false then t1 else t2 K = if false then suspend { k2 ⇒ run(k1) { s1 } } else s2 ⇝ k2

and
DMJ ⟨ E ∥ t2 ⟩ K = ⟨ DEJ E K.rm(k2) ∥ s2 ∥ DKJ E(k2) K ⟩

By rule (ifflsb-1) we obtain

DMJ ⟨ E ∥ if false then t1 else t2 ⟩ K
= ⟨ DEJ E K.rm(k2) ∥ if false then suspend { k2 ⇒ run(k1) { s1 } } else s2 ∥ DKJ E(k2) K ⟩
→ ⟨ DEJ E K.rm(k2) ∥ s2 ∥ DKJ E(k2) K ⟩

which is exactly what we want.

◀

We again obtain the corollary of evaluation as for the CPS translation above. The DS-machine
needs at most four times as many steps as the CPS-machine.

Proof. Note that DJ exit e K = exit e ⇝ • and thus

DKJ done K = { DEJ • K, (x : τ) ⇒ exit x } = done

Hence, we have

DMJ ⟨ k 7→ done ∥ t ⟩ K = ⟨ • ∥ s ∥ done ⟩

and
DMJ ⟨ E ∥ exit e ⟩ K = ⟨ DEJ E K ∥ exit e ⟩

The claim now follows by Corollary 13. ◀

63

D.2 Right Inverse
We now prove that DJ · K is the right inverse of CJ · K (Theorem 15).

Proof. Induction over the typing derivation and case distinctions according to the definition
of DJ · K. We use in various cases that DJ · K does not introduce fresh variables.

case App
Given Γ ⊢ f (e k) we distinguish whether k ∈ FV(f (e)) or not.

If so, we have DJ f (e k) K = run(k) { f (e) } ⇝ •. Since CJ run(k) { s } K• = CJ s Kk we
obtain CJ DJ f (e k) K K• = CJ f (e) Kk = f (e k).
If not, we have DJ f (e k) K = f (e) ⇝ k and obtain CJ DJ f (e k) K Kk = CJ f (e) Kk = f (e k).

case Jmp
Given Γ ⊢ k(e) we have DJ k(e) K = ret e ⇝ k and obtain CJ DJ k(e) K Kk = CJ ret e Kk = k(e).

case Let
Given Γ ⊢ let f (x : τ k0 : ¬ τ0) { t0 }; t we have Γ, x : τ , k0 : ¬ τ0 ⊢ t0 and Γ, f : τ → τ0 ⊢ t.

We distinguish whether DJ t K = s ⇝ • or DJ t K = s ⇝ k. In each case we need to distin-
guish three subcases, DJ t0 K = s0 ⇝ k0, DJ t0 K = s0 ⇝ • and DJ t0 K = s0 ⇝ v0 with
v0 ̸= k0.

Case DJ t K = s ⇝ • and DJ t0 K = s0 ⇝ k0 (note that this means that k0 ̸∈ FV(s0)):
By the induction hypothesis we have CJ s K• = t and CJ s0 Kk0

= t0. Hence we obtain

CJ DJ let f (x k0) { t0 }; t K K•
= CJ def f (x) { s0 }; s K•
= let f (x k0) { CJ s0 Kk0

}; CJ s K• (k0 is fresh)
= let f (x k0) { t0 }; t

Case DJ t K = s ⇝ • and DJ t0 K = s0 ⇝ •:
By the induction hypothesis we have CJ s K• = t and CJ s0 K• = t0. Hence we obtain

CJ DJ let f (x k0) { t0 }; t K K•
= CJ def f (x) { suspend { k0 ⇒ s0 } }; s K•
= let f (x k1) { CJ suspend { k0 ⇒ s0 } Kk1

}; CJ s K• (k1 is fresh)
= let f (x k0) { CJ s0 K• }; t (α-renaming)
= let f (x k0) { t0 }; t

Case DJ t K = s ⇝ • and DJ t0 K = s0 ⇝ v0 where v0 ̸= k0:
By the induction hypothesis we have CJ s K• = t and CJ s0 Kv0

= t0. Hence we obtain

CJ DJ let f (x k0) { t0 }; t K K•
= CJ def f (x) { suspend { k0 ⇒ run(v0) { s0 } } }; s K•
= let f (x k1) { CJ suspend { k0 ⇒ run(v0) { s0 } } Kk1

}; CJ s K• (k1 is fresh)
= let f (x k0) { CJ run(v0) { s0 } K• }; t (α-renaming (v0 ̸= k0))
= let f (x k0) { CJ s0 Kv0

}; t
= let f (x k0) { t0 }; t

Case DJ t K = s ⇝ k and DJ t0 K = s0 ⇝ k0 (note that this means that k0 ̸∈ FV(s0)):
By the induction hypothesis we have CJ s Kk = t and CJ s0 Kk0

= t0. We distinguish

TR 2023

64

whether k ∈ FV(def f (x) { s0 }; s) or not.
If so, we have DJ let f (x k0) { t0 }; t K = run(k) { def f (x) { s0 }; s } ⇝ •.
Since CJ run(k) { s } K• = CJ s Kk we obtain

CJ DJ let f (x k0) { t0 }; t K K•
= CJ def f (x) { s0 }; s Kk
= let f (x k0) { CJ s0 Kk0

}; CJ s Kk (k0 is fresh)
= let f (x k0) { t0 }; t

If not, we have DJ let f (x k0) { t0 }; t K = def f (x) { s0 }; s ⇝ k and we likewise obtain

CJ DJ let f (x k0) { t0 }; t K Kk
= CJ def f (x) { s0 }; s Kk
= let f (x k0) { t0 }; t

Case DJ t K = s ⇝ k and DJ t0 K = s0 ⇝ •:
By the induction hypothesis we have CJ s Kk = t and CJ s0 K• = t0. We distinguish whether
k ∈ FV(def f (x) { suspend { k0 ⇒ s0 } }; s) or not.
If so, we have DJ let f (x k0) { t0 }; t K = run(k) { def f (x) { suspend { k0 ⇒ s0 } }; s } ⇝ •.
Since CJ run(k) { s } K• = CJ s Kk we obtain

CJ DJ let f (x k0) { t0 }; t K K•
= CJ def f (x) { suspend { k0 ⇒ s0 } }; s Kk
= let f (x k1) { CJ suspend { k0 ⇒ s0 } Kk1

}; CJ s Kk (k1 is fresh)
= let f (x k0) { CJ s0 K• }; t (α-renaming)
= let f (x k0) { t0 }; t

If not, we have DJ let f (x k0) { t0 }; t K = def f (x) { suspend { k0 ⇒ s0 } }; s ⇝ k and
we likewise obtain

CJ DJ let f (x k0) { t0 }; t K Kk
= CJ def f (x) { suspend { k0 ⇒ s0 } }; s Kk
= let f (x k0) { t0 }; t

Case DJ t K = s ⇝ k and DJ t0 K = s0 ⇝ v0 where v0 ̸= k0:
By the induction hypothesis we have CJ s Kk = t and CJ s0 Kv0

= t0. We distinguish
whether k ∈ FV(def f (x) { suspend { k0 ⇒ run(v0) { s0 } } }; s) or not.
If so, we have
DJ let f (x k0) { t0 }; t K = run(k) { def f (x) { suspend { k0 ⇒ run(v0) { s0 } } }; s } ⇝ •.
Since CJ run(k) { s } K• = CJ s Kk we obtain

CJ DJ let f (x k0) { t0 }; t K K•
= CJ def f (x) { suspend { k0 ⇒ run(v0) { s0 } } }; s Kk
= let f (x k1) { CJ suspend { k0 ⇒ run(v0) { s0 } } Kk1

}; CJ s Kk (k1 is fresh)
= let f (x k0) { CJ run(v0) { s0 } K• }; t (α-renaming (v0 ̸= k0))
= let f (x k0) { CJ s0 Kv0

}; t
= let f (x k0) { t0 }; t

If not, we have DJ let f (x k0) { t0 }; t K = def f (x) { suspend { k0 ⇒ run(v0) { s0 } } }; s ⇝ k
and we likewise obtain

CJ DJ let f (x k0) { t0 }; t K Kk
= CJ def f (x) { suspend { k0 ⇒ run(v0) { s0 } } }; s Kk
= let f (x k0) { t0 }; t

65

case Cnt
Given Γ ⊢ cnt k0(x : τ) { t0 }; t we have Γ, x : τ ⊢ t0 and Γ, k0 : ¬ τ ⊢ t.

We distinguish whether DJ t K = s ⇝ •, DJ t K = s ⇝ k with k ̸= k0 or DJ t K = s ⇝ k0.
In each case we need to distinguish several subcases for DJ t0 K.

Case DJ t K = s ⇝ • and DJ t0 K = s0 ⇝ •:
By the induction hypothesis we have CJ s K• = t and CJ s0 K• = t0. Hence we obtain

CJ DJ cnt k0(x) { t0 }; t K K•
= CJ process k0(x) { s0 }; s K•
= cnt k0(x) { CJ s0 K• }; CJ s K•
= cnt k0(x) { t0 }; t

Case DJ t K = s ⇝ • and DJ t0 K = s0 ⇝ x:
By the induction hypothesis we have CJ s K• = t and CJ s0 Kx = t0. Hence we obtain

CJ DJ cnt k0(x) { t0 }; t K K•
= CJ process k0(x) { run(x) { s0 } }; s K•
= cnt k0(x) { CJ run(x) { s0 } K• }; CJ s K•
= cnt k0(x) { CJ s0 Kx }; t
= cnt k0(x) { t0 }; t

Case DJ t K = s ⇝ • and DJ t0 K = s0 ⇝ v0 where v0 ̸= x:
By the induction hypothesis we have CJ s K• = t and CJ s0 Kv0

= t0. We distinguish
whether v0 ∈ FV(val x = suspend { k0 ⇒ s }; s0) or not.
If so, we have DJ cnt k0(x) { t0 }; t K = run(v0)(val x = suspend { k0 ⇒ s }; s0) ⇝ •.
Since CJ run(k) { s } K• = CJ s Kk we obtain

CJ DJ cnt k0(x) { t0 }; t K K•
= CJ val x = suspend { k0 ⇒ s }; s0 Kv0

= cnt k1(x) = CJ s0 Kv0
; CJ suspend { k0 ⇒ s } Kk1

(k1 is fresh)
= cnt k0(x) = t0; CJ s K• (α-renaming)
= cnt k0(x) = t0; t

If not, we have DJ cnt k0(x) { t0 }; t K = val x = suspend { k0 ⇒ s }; s0 ⇝ v0.
and we likewise obtain

CJ DJ cnt k0(x) { t0 }; t K Kv0

= CJ val x = suspend { k0 ⇒ s }; s0 Kv0

= cnt k0(x) = t0; t

Case DJ t K = s ⇝ k with k ̸= k0 and DJ t0 K = s0 ⇝ •:
By the induction hypothesis we have CJ s Kk = t and CJ s0 K• = t0. We distinguish whether
k ∈ FV(process k0(x) { s0 }; s) or not.
If so, we have DJ cnt k0(x) { t0 }; t K = run(k) { process k0(x) { s0 }; s } ⇝ •.
Since CJ run(k) { s } K• = CJ s Kk we obtain

CJ DJ cnt k0(x) { t0 }; t K K•
= CJ process k0(x) { s0 }; s Kk
= cnt k0(x) { CJ s0 K• }; CJ s Kk
= cnt k0(x) { t0 }; t

TR 2023

66

If not, we have DJ cnt k0(x) { t0 }; t K = process k0(x) { s0 }; s ⇝ k and we likewise ob-
tain

CJ DJ cnt k0(x) { t0 }; t K Kk
= CJ process k0(x) { s0 }; s Kk
= cnt k0(x) { t0 }; t

Case DJ t K = s ⇝ k with k ̸= k0 and DJ t0 K = s0 ⇝ x:
By the induction hypothesis we have CJ s Kk = t and CJ s0 Kx = t0. We distinguish whether
k ∈ FV(process k0(x) { run(x) { s0 } }; s) or not.
If so, we have DJ cnt k0(x) { t0 }; t K = run(k) { process k0(x) { run(x) { s0 } }; s } ⇝ •.
Since CJ run(k) { s } K• = CJ s Kk we obtain

CJ DJ cnt k0(x) { t0 }; t K K•
= CJ process k0(x) { run(x) { s0 } }; s Kk
= cnt k0(x) { CJ run(x) { s0 } K• }; CJ s Kk
= cnt k0(x) { CJ s0 Kx }; t
= cnt k0(x) { t0 }; t

If not, we have DJ cnt k0(x) { t0 }; t K = process k0(x) { run(x) { s0 } }; s ⇝ k and we
likewise obtain

CJ DJ cnt k0(x) { t0 }; t K Kk
= CJ process k0(x) { run(x) { s0 } }; s Kk
= cnt k0(x) { t0 }; t

Case DJ t K = s ⇝ k with k ̸= k0 and DJ t0 K = s0 ⇝ v0 where v0 ̸= x:
By the induction hypothesis we have CJ s Kk = t and CJ s0 Kv0

= t0. We distinguish
whether v0 ∈ FV(val x = suspend { k0 ⇒ run(k) { s } }; s0) or not.
If so, we have DJ cnt k0(x) { t0 }; t K = run(v0)(val x = suspend { k0 ⇒ run(k) { s } }; s0) ⇝ •.
Since CJ run(k) { s } K• = CJ s Kk we obtain

CJ DJ cnt k0(x) { t0 }; t K K•
= CJ val x = suspend { k0 ⇒ run(k) { s } }; s0 Kv0

= cnt k1(x) = CJ s0 Kv0
; CJ suspend { k0 ⇒ run(k) { s } } Kk1

(k1 is fresh)
= cnt k0(x) = t0; CJ run(k) { s } K• (α-renaming (k ̸= k0))
= cnt k0(x) = t0; CJ s Kk
= cnt k0(x) = t0; t

If not, we have DJ cnt k0(x) { t0 }; t K = val x = suspend { k0 ⇒ run(k) { s } }; s0 ⇝ v0.
and we likewise obtain

CJ DJ cnt k0(x) { t0 }; t K Kv0

= CJ val x = suspend { k0 ⇒ run(k) { s } }; s0 Kv0

= cnt k0(x) = t0; t

Case DJ t K = s ⇝ k0 and DJ t0 K = s0 ⇝ •:
By the induction hypothesis we have CJ s Kk0

= t and CJ s0 K• = t0. Hence we obtain

CJ DJ cnt k0(x) { t0 }; t K K•
= CJ process k0(x) { s0 }; run(k0) { s } K•
= cnt k0(x) { CJ s0 K• }; CJ run(k0) { s } K•
= cnt k0(x) { t0 }; t

67

Case DJ t K = s ⇝ k0 and DJ t0 K = s0 ⇝ x:
By the induction hypothesis we have CJ s Kk0

= t and CJ s0 Kx = t0. Hence we obtain

CJ DJ cnt k0(x) { t0 }; t K K•
= CJ process k0(x) { run(x) { s0 } }; run(k0) { s } K•
= cnt k0(x) { CJ run(x) { s0 } K• }; CJ run(k0) { s } K•
= cnt k0(x) { CJ s0 Kx }; CJ s Kk0

= cnt k0(x) { t0 }; t

Case DJ t K = s ⇝ k0 and DJ t0 K = s0 ⇝ v0 with v0 ̸= x:
By the induction hypothesis we have CJ s Kk0

= t and CJ s0 Kv0
= t0. We distinguish

whether v0 ∈ FV(val x = s; s0) or not.
If so, we have DJ cnt k0(x) { t0 }; t K = run(v0) { val x = s; s0 } ⇝ •.
Since CJ run(k) { s } K• = CJ s Kk and since k0 ̸∈ FV(s) we obtain

CJ DJ cnt k0(x) { t0 }; t K K•
= CJ val x = s; s0 Kv0

= cnt k0(x) { CJ s0 Kv0
}; CJ s Kk0

(k0 is fresh)
= cnt k0(x) { t0 }; t

If not, we have DJ cnt k0(x) { t0 }; t K = val x = s; s0 ⇝ v0 and we likewise obtain

CJ DJ cnt k0(x) { t0 }; t K Kv0

= CJ val x = s; s0 Kv0

= cnt k0(x) { t0 }; t

case Ext
Given Γ ⊢ exit e we have DJ exit e K = exit e ⇝ •. Hence we obtain

CJ DJ exit e K K• = CJ exit e K• = exit e.

case If
Given Γ ⊢ if e then t1 else t2 we have Γ ⊢ t1 and Γ ⊢ t2. We distinguish cases accord-

ing to the definition of DJ · K.

Case DJ t1 K = s1 ⇝ k and DJ t2 K = s2 ⇝ k:
By the induction hypothesis we have CJ si Kk = ti for i = 1, 2. Hence we obtain

CJ DJ if e then t1 else t2 K Kk
= CJ if e then s1 else s2 Kk
= if e then CJ s1 Kk else CJ s2 Kk
= if e then t1 else t2

Case DJ t1 K = s1 ⇝ • and DJ t2 K = s2 ⇝ •:
By the induction hypothesis we have CJ si K• = ti for i = 1, 2. Hence we obtain

CJ DJ if e then t1 else t2 K K•
= CJ if e then s1 else s2 K•
= if e then CJ s1 K• else CJ s2 K•
= if e then t1 else t2

Case DJ t1 K = s1 ⇝ • and DJ t2 K = s2 ⇝ k:

TR 2023

68

By the induction hypothesis we have CJ s1 K• = t1 and CJ s2 Kk = t2. Hence we obtain

CJ DJ if e then t1 else t2 K Kk
= CJ if e then suspend { k ⇒ s1 } else s2 Kk
= if e then CJ suspend { k ⇒ s1 } Kk else CJ s2 Kk
= if e then CJ s1 K• else CJ s2 Kk
= if e then t1 else t2

Case DJ t1 K = s1 ⇝ k and DJ t2 K = s2 ⇝ •:
By the induction hypothesis we have CJ s1 Kk = t1 and CJ s2 K• = t2. Hence we obtain

CJ DJ if e then t1 else t2 K Kk
= CJ if e then s1 else suspend { k ⇒ s2 } Kk
= if e then CJ s1 Kk else CJ suspend { k ⇒ s2 } Kk
= if e then CJ s1 Kk else CJ s2 K•
= if e then t1 else t2

Case DJ t1 K = s1 ⇝ k1 and DJ t2 K = s2 ⇝ k2:
By the induction hypothesis we have CJ si Kki

= ti for i = 1, 2. Hence we obtain

CJ DJ if e then t1 else t2 K Kk2

= CJ if e then suspend { k2 ⇒ run(k1) { s1 } } else s2 Kk2

= if e then CJ suspend { k2 ⇒ run(k1) { s1 } } Kk2
else CJ s2 Kk2

= if e then CJ run(k1) { s1 } K• else CJ s2 Kk2

= if e then CJ s1 Kk1
else CJ s2 Kk2

= if e then t1 else t2

◀

Next, we can show that the right inverse property can be extended to machines (Theorem 16).

Proof. For each statement we distinguish cases according to the definition of the correspond-
ing direct-style translation. We use in various cases that the direct-style translations do not
introduce fresh variables.

Configurations
Given ⊢ ⟨ E ∥ t ⟩ we distinguish whether DJ t K = s ⇝ • or DJ t K = s ⇝ k.

case DJ t K = s ⇝ •
In this case we have CJ s K• = t by Theorem 15. Using the statement for environments

we thus obtain
CMJ DMJ ⟨ E ∥ t ⟩ K K
= CMJ ⟨ DEJ E K ∥ s ⟩ K
= ⟨ CEJ DEJ E K K ∥ CJ s K• ⟩
= ⟨ E ∥ t ⟩

case DJ t K = s ⇝ k
In this case we have CJ s Kk = t by Theorem 15. Note that k ̸∈ FV(s) and also that

k ̸∈ dom(E.rm(k)). Using the statement for environments and frames and

69

DEJ E K.rm(k) = DEJ E.rm(k) K we obtain

CMJ DMJ ⟨ E ∥ t ⟩ K K
= CMJ ⟨ DEJ E K.rm(k) ∥ s ∥ DKJ E(k) K ⟩ K
= ⟨ CEJ DEJ E.rm(k) K K, k 7→ CKJ DKJ E(k) K K ∥ CJ s Kk ⟩ (k is fresh)
= ⟨ E.rm(k), k 7→ E(k) ∥ t ⟩
= ⟨ E ∥ t ⟩

Values
Given ⊢val V we distinguish whether V is an integer, a closure or a frame.

case V = 19
This case is immediate: CV J DV J 19 K K = CV J 19 K = 19.

case V = { E, (x : τ k0 : ¬ τ0) ⇒ t0 } (note that this means that k0 ̸∈ dom(E))
We need to distinguish three subcases, DJ t0 K = s0 ⇝ k0, DJ t0 K = s0 ⇝ • and

DJ t0 K = s0 ⇝ v0 with v0 ̸= k0. These are analogous to the corresponding cases for Let
in theorem 15.

Case DJ t0 K = s0 ⇝ k0 (note that this means that k0 ̸∈ FV(s0)):
By Theorem 15 we have CJ s0 Kk0

= t0. With the statement for environments we thus
obtain

CV J DV J { E, (x : τ k0 : ¬ τ0) ⇒ t0 } K K
= CV J { DEJ E K, (x : τ) ⇒ s0 } K
= { CEJ DEJ E K K, (x : τ k0 : ¬ τ0) ⇒ CJ s0 Kk0

} (k0 is fresh)
= { E, (x : τ k0 : ¬ τ0) ⇒ s0 }

Case DJ t0 K = s0 ⇝ •:
By Theorem 15 we have and CJ s0 K• = t0. With the statement for environments we thus
obtain

CV J DV J { E, (x : τ k0 : ¬ τ0) ⇒ t0 } K K•
= CV J { DEJ E K, (x : τ) ⇒ suspend { k0 ⇒ s0 } } K
= { CEJ DEJ E K K, (x : τ k1 : ¬ τ0) ⇒ CJ suspend { k0 ⇒ s0 } } Kk1

} (k1 is fresh)
= { E, (x : τ k0 : ¬ τ0) ⇒ CJ s0 K• } (α-renaming)
= { E, (x : τ k0 : ¬ τ0) ⇒ t0 }

Case DJ t0 K = s0 ⇝ v0 where v0 ̸= k0:
By Theorem 15 we have CJ s0 Kv0

= t0. With the statement for environments we thus
obtain

CV J DV J { E, (x : τ k0 : ¬ τ0) ⇒ t0 } K K•
= CV J { DEJ E K, (x : τ) ⇒ suspend { k0 ⇒ run(v0) { s0 } } } K
= { CEJ DEJ E K K, (x : τ k1 : ¬ τ0) ⇒ CJ suspend { k0 ⇒ run(v0) { s0 } } Kk1

} (k1 is fresh)
= { E, (x : τ k0 : ¬ τ0) ⇒ CJ run(v0) { s0 } K• } (α-renaming (v0 ̸= k0))
= { E, (x : τ k0 : ¬ τ0) ⇒ CJ s0 Kv0

}
= { E, (x : τ k0 : ¬ τ0) ⇒ t0 }

case V = { E, (x : τ) ⇒ t0 }
In this case the result follows from the statement for frames since

CV J DV J { E, (x : τ) ⇒ t0 } K K
= CKJ DKJ { E, (x : τ) ⇒ t0 } K K
= { E, (x : τ) ⇒ t0 }

TR 2023

70

Environments
This follows from the statement for values. Given E ⊢env Γ we distinguish whether E is
empty or not.
If so, we have CEJ DEJ • K K = CEJ • K = •.
If not, we obtain using the induction hypothesis

CEJ DEJ E, x 7→ V K K
= CEJ DEJ E K , x 7→ DV J V K K
= CEJ DEJ E K K , x 7→ CV J DV J V K K
= E, x 7→ V

Frames
For ⊢val { E, (x : τ) ⇒ t0 } : ¬ τ we distinguish whether DJ t0 K = s0 ⇝ •, DJ t0 K = s0 ⇝ x
or DJ t0 K = s0 ⇝ k with k ̸= x.

case DJ t0 K = s0 ⇝ •
By theorem 15 we have CJ s0 K• = t0. With the statement for environments we thus

obtain
CKJ DKJ { E, (x : τ) ⇒ t0 } K K
= CKJ { DEJ E K, (x : τ) ⇒ s0 } K
= { CEJ DEJ E K K, (x : τ) ⇒ CJ s0 K• }
= { E, (x : τ) ⇒ t0 }

case DJ t0 K = s0 ⇝ x
By theorem 15 we have CJ s0 Kx = t0. With the statement for environments we thus

obtain
CKJ DKJ { E, (x : τ) ⇒ t0 } K K
= CKJ { DEJ E K, (x : τ) ⇒ run(x) { s0 } } K
= { CEJ DEJ E K K, (x : τ) ⇒ CJ run(x) { s0 } K• }
= { E, (x : τ) ⇒ CJ s0 Kx }
= { E, (x : τ) ⇒ t0 }

case DJ t0 K = s0 ⇝ k (note that this means that k ̸∈ FV(s0)) with k ̸= x
By theorem 15 we have CJ s0 Kk = t0. With the statement for environments and the

induction hypothesis we thus obtain (similar to the second case for configurations)

CKJ DKJ { E, (x : τ) ⇒ t0 } K K
= CKJ { DEJ E K.rm(k), (x : τ) ⇒ s0 } :: DKJ E(k) K K
= { CEJ DEJ E.rm(k) K K, k 7→ CKJ DKJ E(k) K K, (x : τ) ⇒ CJ s0 Kk } (k is fresh)
= { E.rm(k), k 7→ E(k), (x : τ) ⇒ s0 }
= { E, (x : τ) ⇒ s0 }

◀

D.3 Restricted Left Inverse
We first prove that DJ · K is the left inverse of CJ · K on the pure fragment of λD (Theorem 17).

Proof. Induction over the typing derivation.

case Sequence
Given Γ ⊢ val x0 = s0; s : τ we have Γ ⊢ s0 : τ0 and Γ, x : τ0 ⊢ s : τ .

The induction hypothesis thus yields DJ CJ s0 Kk K = s0 ⇝ k and DJ CJ s Kk K = s ⇝ k

71

for fresh k.
Hence, for fresh k we obtain

DJ CJ val x0 = s0; s Kk K
= DJ cnt k0(x0) = { CJ s Kk }; CJ s0 Kk0

K
= val x0 = s0; s ⇝ k (k ̸= x0) (k not free)

case Return
Given Γ ⊢ ret e : τ we have for fresh k

DJ CJ ret e Kk K
= DJ k(e) K
= ret e ⇝ k

case Define
Given Γ ⊢ def f (x) { s0 }; s : τ we have Γ, x : τ ⊢ s0 : τ0 and Γ, f : τ → τ0 ⊢ s : τ .

The induction hypothesis thus yields DJ CJ s0 Kk K = s0 ⇝ k and DJ CJ s Kk K = s ⇝ k
for fresh k. Hence, for fresh k we obtain

DJ CJ def f (x) { s0 }; s Kk K
= DJ let f (x k0) = { CJ s0 Kk0

}; CJ s Kk K
= def f (x) { s0 }; s ⇝ k (k not free)

case Call
Given Γ ⊢ f (e) : τ we have for fresh k

DJ CJ f (e) Kk K
= DJ f (e k) K
= f (e) ⇝ k (k not free)

case If
Given Γ ⊢ if e then s1 else s2 : τ we have Γ ⊢ s1 : τ and Γ ⊢ s2 : τ .

The induction hypothesis thus yields DJ CJ si Kk K = si ⇝ k for fresh k for i = 1, 2.
Hence, for fresh k we obtain

DJ CJ if e then s1 else s2 Kk K
= DJ if e then CJ s1 Kk else CJ s2 Kk K
= if e then s1 else s2 ⇝ k

◀

Now we can show that the restricted left inverse property can be extended to machines
(Theorem 18).

Proof. For each statement we distinguish cases according to the definition of the correspond-
ing CPS translation.

Configurations
Given ⊢ ⟨ E ∥ s ∥ K ⟩ we have for fresh k that DJ CJ s Kk K = s ⇝ k by Theorem 17. Hence
for fresh k we use the statements for environments and stacks to obtain

DMJ CMJ ⟨ E ∥ s ∥ K ⟩ K K
= DMJ ⟨ CEJ E K, k 7→ CKJ K K ∥ CJ s Kk ⟩ K (k ̸∈ E)
= ⟨ DEJ CEJ E K K ∥ s ∥ DKJ CKJ K K K ⟩
= ⟨ E ∥ s ∥ K ⟩

TR 2023

72

Values
Given ⊢val V we distinguish whether V is an integer or a closure.

case V = 19
This case is immediate: DV J CV J 19 K K = DV J 19 K = 19.

case V = { E, (x : τ) ⇒ s }
By Theorem 15 we have DJ CJ s Kk K = s ⇝ k for fresh k. With the statement for environ-
ments we thus obtain

DV J CV J { E, (x : τ) ⇒ s } K K
= DV J { CEJ E K, (x : τ k : ¬ τ0) ⇒ CJ s Kk } K
= { DEJ CEJ E K K, (x : τ) ⇒ s }
= { E, (x : τ) ⇒ s }

Environments
This follows from the statement for values. Given E ⊢env Γ we distinguish whether E is
empty or not.
If so, we have DEJ CEJ • K K = DEJ • K = •.
If not, we obtain using the induction hypothesis

DEJ CEJ E, x 7→ V K K
= DEJ CEJ E K , x 7→ CV J V K K
= DEJ CEJ E K K , x 7→ DV J CV J V K K
= E, x 7→ V

Stacks
For τ ⊢stk done this is immediate

DKJ CKJ done K K
= DKJ done K
= done

as we have seen in previous proofs already.
For τ ⊢stk { E, (x : τ) ⇒ s } :: K we obtain by theorem 17 that DJ CJ s Kk K = s ⇝ k
for fresh k. With the statement for environments and stacks we thus obtain

DKJ CKJ { E, (x : τ) ⇒ s } :: K K K
= DKJ { CEJ E K, k 7→ CKJ K K, (x : τ) ⇒ CJ s Kk } K
= { DEJ CEJ E K K, (x : τ) ⇒ s } :: DKJ CKJ K K K (k ̸∈ E) (k ̸= x)
= { E, (x : τ) ⇒ t0 } :: K

◀

D.4 Semantics Reflection
Next, we prove the corollaries about reflection of machine steps (19, 20 and 21).

D.4.1 DS Translation
Let us first look at the DS translation. If there is a step in the DS-machine between translated
machine configurations then there must be a step in the CPS-machine between the original
states.

73

Proof. Note that by Theorem 7 we have ⊢ DMJ M K. Thus, Theorems 16 and 8 yield

M = CMJ DMJ M K K →? CMJ DMJ M′ K K = M′

However, M →0 M′ means M = M′ which would imply DMJ M K = DMJ M′ K contradicting
the assumption that there is a step between these configurations. Hence, we have M → M′. ◀

D.4.2 CPS Translation
For the CPS translation we only have such a result for pure fragment of λD. We first prove
the corollary stating that evaluation in the CPS-machine is closed on the image of the pure
fragment and in lockstep with the DS-machine.

Proof. Since the pure fragment of λD is closed under evaluation, pure(DMJ M′ K) follows
from the first statement. By Theorem 7 we have ⊢ CMJ M K. Thus, Theorems 18 and 12
yield

M = DMJ CMJ M K K →[1−4] DMJ M′ K

Hence, there is M′′ such that M → M′′ →[0−3] DMJ M′ K. Note that since the pure fragment
is closed we have pure(M′′) and preservation for the pure fragment yields ⊢ M′′. Theorem 9
implies CMJ M K → CMJ M′′ K and since the machine steps deterministically (see theorem 4)
we have CMJ M′′ K = M′. Hence, M′′ = DMJ CMJ M′′ K K = DMJ M′ K by theorem 18. ◀

Now step-reflection is immediate.

Proof. By corollary 20 we have M → DMJ CMJ M′ K K and theorem 18 yields the result. ◀

TR 2023

	1 Introduction
	2 Motivation
	2.1 Basic Example
	2.2 Control Operators
	2.3 Classical Logic
	2.4 Section Conclusion

	3 Technical Development
	3.1 Direct Style
	3.1.1 Typing
	3.1.2 Semantics

	3.2 Continuation-Passing Style
	3.2.1 Typing
	3.2.2 Semantics

	3.3 Translations
	3.3.1 From Direct Style to Continuation-Passing Style
	3.3.2 From Continuation-Passing Style Back to Direct Style

	3.4 Properties
	3.5 Conditional Statements
	3.5.1 Biased Solution
	3.5.2 Other Alternative Designs

	4 Related Work
	4.1 Back to Direct Style I and II
	4.2 Development of ANF
	4.3 Further Developments for Calculi Without Control Operators
	4.4 Back to Direct Style with Delimited Control

	5 Conclusion
	A Typing of machines
	B Pure fragment
	C Conditionals
	D Proofs
	D.1 Simulation (Semantics Preservation)
	D.1.1 CPS Translation
	D.1.2 DS Translation

	D.2 Right Inverse
	D.3 Restricted Left Inverse
	D.4 Semantics Reflection
	D.4.1 DS Translation
	D.4.2 CPS Translation

