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Effect handlers are a high-level abstraction that enables programmers to use effects in a structured way. They
have gained a lot of popularity within academia and subsequently also in industry. However, the abstraction
often comes with a significant runtime cost and there has been intensive research recently on how to reduce
this price.

A promising approach in this regard is to implement effect handlers using a CPS translation and to provide
sufficient information about the nesting of handlers. With this information the CPS translation can decide
how effects have to be lifted through handlers, i.e., which handlers need to be skipped, in order to handle the
effect at the correct place. A structured way to make this information available is to use a calculus with a
region system and explicit subregion evidence. Such calculi, however, are quite verbose, which makes them
impractical to use as a source-level language.

We present a method to infer the lifting information for a calculus underlying a source-level language.
This calculus uses second-class capabilities for the safe use of effects. To do so, we define a typed translation
to a calculus with regions and evidence and we show that this lift-inference translation is typability- and
semantics-preserving. On the one hand, this exposes the precise relation between the second-class property
and the structure given by regions. On the other hand, it closes a gap in a compiler pipeline enabling efficient
compilation of the source-level language. We have implemented lift inference in this compiler pipeline and
conducted benchmarks which indicate that the approach is indeed working.
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1 INTRODUCTION

Languages with effect handlers [Plotkin and Pretnar 2009, 2013] offer a high-level way to structure
effectful programs. Effect handlers allow for a combination of various effects by giving meaning
to abstract effect operations (such as exceptions, async-await, generators, logic programming, or
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probabilistic programming) in a composable way. In the past decade, effect handlers have been
a hot topic in programming language research and have also gained more and more popularity
outside academia. They have been implemented not only in research languages (such as Eff [Bauer
and Pretnar 2015], Koka [Leijen 2017], Frank [Lindley et al. 2017], Effekt [Brachthäuser et al.
2020], or Helium [Biernacki et al. 2019]), but also practical general purpose languages such as
OCaml [Sivaramakrishnan et al. 2021], Scala2, Unison3, and WebAssembly1 are following lead and
have started to integrate effects and handlers. However, to make effect handlers practically useful,
it is critically important to minimize the runtime cost incurred by this abstraction.
Our goal, thus, is to have a source-level language with effect handlers that can be compiled

efficiently. Ideally, the language should be effect-safe and sufficiently expressive without being
unnecessarily complex. A recently developed way to strike this balance is using lightweight effect
polymorphism. Brachthäuser et al. [2020] show how to design such a system using second-class

capabilities [Osvald et al. 2016]. They develop the language Effekt which features lexical effect
handlers [Biernacki et al. 2019; Brachthäuser et al. 2020; Zhang and Myers 2019], a recent variant of
effect handlers, and show how to translate it to System Ξ, a calculus in explicit capability-passing
style. The translation preserves typing and is used to give the semantics for Effekt.

A recently developedway to efficiently implement lexical effect handlers uses iterated continuation-
passing style (CPS). It has been shown to yield good performance results [Schuster et al. 2020].
Moreover, Schuster et al. [2022b] have designed a core calculus Λcap, which features effect han-
dlers based on regions. They show how to translate Λcap to pure System F in a typability- and
semantics-preserving way.
Figure 1 summarizes the developments mentioned above. To reach our goal and complete the

pipeline, we have to close the gap in the middle: we have to show how to translate from a system
with second-class capabilities to a system with region-based effects, i.e., we have to understand the
relation between these two concepts precisely.

Effects

(Effekt)

Second-Class
Capabilities

(System Ξ)

Regions

(Λcap)

Answer-Type
Polymorphism

(System F)

capability

passing

[Osvald et al. 2016]

[Brachthäuser et al. 2020]

li�

inference

[This Paper]

continuation

passing

[Thielecke 2003]

[Schuster et al. 2022b]

Fig. 1. Overview of this paper in relation to prior work. Nodes are labeled with mechanisms to ensure effect
safety (e.g., Effects); below each node one example calculus is listed. Each arrow corresponds to a translation
between calculi.

To do so, in this paper we present a typed translation from the calculus of second-class capabilities
System Ξ to the region-based calculus Λcap. The typed nature of the translation makes the relation
between the two concepts explicit. It connects the lexical scopes of the definition sites of capabilities
in System Ξ with corresponding regions in Λcap, in which the capabilities are allowed to be
used. This connection also materializes in the definition of sound translation environments (see
Definition 3.4), which are maintained during the translation as a key component.

To practically evaluate our approach, we have implemented the translation as a compiler phase
in the Effekt language. As our implementation strategy is to translate effects and handlers to CPS

2https://github.com/lampepfl/dotty/pull/16739
3https://www.unison-lang.org/learn/fundamentals/abilities
1https://github.com/effect-handlers/wasm-spec
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[Hillerström et al. 2020; Schuster et al. 2022b, 2020], we have also implemented the CPS translation
of Schuster et al. [2022b] with Standard ML [Milner et al. 1997] as the target language, hence
completing a compiler pipeline for Effekt. To further compile SML we use the MLton4 compiler.

For a certain restricted class of programs Schuster et al. [2020] prove that all abstractions related
to effects and handlers can theoretically be eliminated. Moreover, they demonstrate excellent
performance on a number of benchmarkswhich have independently been reproduced by Karachalias
et al. [2021]. However, for their performance evaluation, they wrote programs directly in a core
language _cap. We, for the first time, can reproduce the performance claims of Schuster et al. [2020]
in a realistic source-level language.
Comparing our implementation with other state-of-the-art implementations of effect handlers,

we found that our relative performance ranges from 2.1x slowdown to 44.4x speedup compared
with OCaml [Sivaramakrishnan et al. 2021], 1.1x slowdown to 87.8x speedup compared with Koka
[Leijen 2017; Xie et al. 2020], and 1.2x slowdown to 23.3x speedup compared with Eff [Karachalias
et al. 2021; Pretnar et al. 2017]. The results indicate that the compilation technique presented
by Schuster et al. [2020] works for a high-level language presented by Brachthäuser et al. [2020]
and yields good performance.
By closing the conceptual gap between lexical scoping and regions, we enable efficient com-

pilation of lexical effect handlers, like those found in Effekt or Helium. However, our results do
not immediately carry over to dynamic effect handlers, as implemented in OCaml 5, Koka, and
WebAssembly and we leave further investigation of this to future work.

Our contributions are the following.

• We formally present a typability- and semantics-preserving translation from System Ξ to
Λcap. We refer to this as lift-inference translation for reasons to be explained shortly.
• From a theoretical perspective, we hence clarify the precise relation between scope-based
reasoning for second-class capabilities and region-based reasoning.
• From a practical perspective, we fill in an important missing link in the compiler pipeline
illustrated in Figure 1.
• In Λcap, continuation calls have to be scoped [Xie et al. 2020]. No such restriction exists
for System Ξ. To support System Ξ, we lift the scoped-continuation restriction imposed
by Schuster et al. [2022b] and thus generalize Λcap. We prove that the generalized system
still allows for a translation to iterated CPS satisfying the same properties as the original.
• We have implemented the lift-inference translation and the CPS translation as steps for
the efficient compilation of the source-level language Effekt to SML. In addition, we have
performed benchmarks indicating that our approach is competitive with or often faster than
other state-of-the-art languages featuring effect handlers.

Next, in Section 2, we introduce the main ideas of the lift-inference translation by considering
examples. In Section 3, we first recap the two calculi involved and then formally present the lift-
inference translation. A discussion of the implementation and the corresponding benchmarks is
given in Section 4. In Section 5, we compare to related work. We conclude and outline future work
in Section 6.
Due to lack of space, proofs and some definitions have been omitted. These can be found in an

extended technical report [Müller et al. 2023b].

2 MAIN IDEAS

In this section we introduce the main ideas for our lift-inference translation from the source calculus
System Ξ [Brachthäuser et al. 2020] to the target calculus Λcap [Schuster et al. 2022b]. Both calculi

4http://mlton.org
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are mostly standard functional languages with multi-arity functions, but additionally feature lexical
effect handlers [Biernacki et al. 2019; Brachthäuser et al. 2020; Zhang and Myers 2019]. Effect
handlers are called lexical if effect operation calls are lexically related to the corresponding effect
handler. This is in contrast to the more traditional dynamically scoped handlers, which search the
stack for the closest handler at runtime. Both calculi establish this lexical connection between effect
and handler by using explicit capability-passing style [Brachthäuser et al. 2020; Zhang and Myers
2019]. This means that effects are bound as capabilities by their handlers and can then be used in
the scope of the handled statement.
Both languages are effect safe, that is, they guarantee that all effect operations are eventually

handled. In System Ξ, this is achieved by making functions and capabilities second-class [Osvald
et al. 2016] so that they cannot be returned or stored in data structures, hence making sure that
capabilities cannot leave their defining scope. To make this explicit, these second-class functions
and capabilities are called blocks. While blocks in System Ξ are required to be second-class, they
still can be higher-order, i.e., functions can abstract block parameters.
In Λcap, there is no such second-class restriction on functions and capabilities. To ensure effect

safety, Λcap features a region system with subregioning and explicit subregion evidence instead.
Here, a region denotes the scope of an effect handler and subregion evidence is used to constructively
witness how handlers are nested. By enforcing that capabilities can only be called in a subregion of
their corresponding handler, this system also ensures that they cannot leave their defining scope.

Since evidence terms precisely witness how handlers are nested, they contain the information of
where capabilities have to be lifted to when they are called, i.e., how many handlers have to be
jumped over until the correct handler is found. This enables efficient compilation of effects and
handlers [Schuster et al. 2022b, 2020]: the lifting can often be promoted to compile time which
avoids the search for the correct handler at runtime. The goal of our lift-inference translation is
thus to infer this lifting information by endowing terms in System Ξ with correct regions and
evidence to obtain valid terms in Λcap.

2.1 Basic Example

To illustrate the need for lifting, as well as how to perform lift inference, consider the following
example in Effekt:

effect Yield(i: Int): Int

try {

def g(i: Int): Int / {} = { do Yield(i) };

val x = g(1);

try { g(x) } with Yield { j ⇒ 42 }

} with Yield { j ⇒ resume(j + 1) }

We define a local function g, which uses the Yield effect to return an integer. It is annotated to
have type Int and no observable effects {}. This means the (dynamic) call site of g cannot handle
the Yield effect and it needs to be handled at the (lexical) definition site of g. In consequence,
running the example will result in the integer 3.
Subfigure 2 (a) shows the result of the type-and-effect directed translation [Brachthäuser et al.

2020] from Effekt (with support for effect inference) to System Ξ in explicit capability-passing
style. Comparing the System Ξ term to the original program, we notice that handlers explicitly
bind capabilities (e.g., yield1) and effect calls now directly refer to a capability (e.g., do yield1 (i)).
Capability passing in System Ξ also makes explicit that the effect call in the body of g refers to the
outer handler.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 255. Publication date: October 2023.
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try { (yield1) ⇒
def g(i : Int) { do yield1 (i) };
val x = g(1);
try { (yield2) ⇒
g(x)
} with { (j, k) ⇒ 42 }

} with { (j, k) ⇒ do k(j + 1) }

(a) Program in System Ξ. Effect safety
is established by treating capabilities
as second-class values.

try { [r1; n1 : r1 ⊑ ⊤](yield1) ⇒
def g[r; n : r ⊑ r1] (i : Int) at r { do yield1 [n] (i) };
val x = g[r1; 0] (1);
try { [r2; n2 : r2 ⊑ r1] (yield2) ⇒
g[r2; n2] (x)
} with { (j, k) ⇒ 42 }

} with { (j, k) ⇒ do k[0] (j + 1) }

(b) Program in Λcap. Effect safety is established by
tracking the region of a capability and requiring subre-
gion evidence.

Fig. 2. Simple example illustrating lexical effect handling.

At runtime, we need to make sure to handle the effect operation with the correct handler. Thus,
when g is called the second time, we have to lift the capability in its body through the inner handler,
that is, we need to skip over the inner handler to transfer control flow to the outer handler. Our
goal is to make this skipping of handlers explicit. Then, our CPS translation can make use of this
information to avoid searching for the correct handler at runtime, as it knows how many segments
of the stack it has to capture.

One possibility, to make this information explicit, would be to use lifting annotations [Biernacki
et al. 2017; Schuster et al. 2020]. The definition of g (for the second call) would then become

def g(i : Int) { do (li� yield1) (i) };

But this is only correct when g is called under the inner handler. When it is called the first time,
immediately after its definition, this annotation is incorrect since no handler has to be skipped. It is
hence not clear what lifting annnotation should be used when defining g. The lifting information
at the definition-site should be correct for any call-site.
A very structured and sufficiently expressive way to deal with this situation is to use regions

and subregion evidence instead. They allow us encode the lifting information and also give us the
ability to abstract over it at the definition-site. This can be seen in Subfigure 2 (b), which shows
what the example looks like in Λcap. Each handler now not only binds a capability, but also a fresh
region (e.g., r1) and subregion evidence (e.g., n1 : r1 ⊑ ⊤) witnessing that the fresh region is
a subregion of the current one (e.g., the toplevel region ⊤). The basic idea now is to abstract the
required lifting information in the form of an evidence parameter n for g, which is then provided to
the call of the capability yield1 in the function body. Capability yield1 is bound at the outer handler
in region r1, so its evidence should witness that the region in which yield1 is called is a subregion of
r1 and which subregion it is. To express this, we also abstract over a region parameter r for g, which
stands for the region at its call-site as is visible in the annotation at r. The evidence parameter
n is thus typed as r ⊑ r1, expressing that the call-site region r must be a subregion of g’s (and
yield1’s) definition region r1.

When calling g under the inner handler, the current region is the region r2 bound at this handler,
so we instantiate g’s region parameter with r2. The evidence passed to g thus must have type
r2 ⊑ r1. This subregion relation is witnessed by evidence n2 bound at the inner handler. But now
we can also call g immediately after defining it, in which case we instantiate its region parameter
with r1. For the evidence we then use the trivial one, 0 : r1 ⊑ r1, stating that subregioning is
reflexive. In in either case, the evidence passed to yield1 correctly witnesses how the capability
must be lifted.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 255. Publication date: October 2023.
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To see how this lifting works, consider the CPS translation of the above program:

Reset(

(Λr1 . _n1 . _yield1 .
_kg. (_k. k (Λr. _n. _i. n Int (yield1 i)))

(_g. (_k1 . (g r1 (Λa. _m. m) 1)
(_x. Reset(

(Λr2 . _n2 . _yield2 . g r2 n2 x)
(Cps r1 Int)
Lift

(_j. _k. _k0 . k0 42)
)

k1))
kg))

(Cps Void Int)
Lift

(_j. _k. (Λa. _m. m) Int (_k0 . k (j + 1) k0))
)

Herewe can see that the evidence parameters n1, n2 bound at the handlers are eventually instantiated
with the function Lift which has the effect of capturing a further delimited continuation. The
delimiters for continuations are given by the meta function Reset which is wrapped around each
handler upon translation and has the effect of applying its argument to an empty continuation. For
the definition of Lift and Reset we refer to Subsection 3.3. The trivial evidence 0 just becomes the
(polymorphic) identity function, Λa. _m. m.

The function g is translated to

Λr. _n. _i. n Int (yield1 i)

In the function body we can see that the application of the capability is translated to an application
of the evidence parameter n to this capability. When looking at the call sites we can then see how
the lifting happens concretely. At the outer call site, n is instatiated with the identity function so
that no lifting happens. At the inner call site (under the second Reset), n is instantiated with n2,
i.e., with Lift, so that here the delimited continuation which is captured does not end at the inner
Reset but at the outer one.
To sum up this subsection, after lift inference each function-block definition should abstract a

fresh region standing for the region in which the function will run, and an evidence parameter
witnessing that this call-site region is a subregion of the function’s definition-site region.

2.2 Higher-Order Functions

The example in the previous subsection only uses first-order functions. However, System Ξ also
supports higher-order functions which make lift inference a bit more complicated. To see why,
consider the following variation of the example from the previous subsection:

def call { f: Int ⇒ Int / {} } =

val x = f(1);

try { f(x) }

with Yield { j ⇒ 42 }

try {

call { (i: Int) ⇒ do Yield(i) }

} with Yield { j ⇒ resume(j + 1) }

As in the previous example, the effect operation is called under two handlers and the result of
running it is the same. This time however, the inner handler is installed by a higher-order function
call. This example motivates, why lexical effect handling can be desirable: as programmers, we

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 255. Publication date: October 2023.
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def call(f : Int→ Int) {
val x = f(1);
try { (yield2) ⇒ f(x) }
with { (j, k) ⇒ 42 }

};

try { (yield1) ⇒
call { (i : Int) ⇒ do yield1 (i) }
} with { (j, k) ⇒ do k(j + 1) }

(a) Program in System Ξ.

def call[rc, rf; nc : rc ⊑ ⊤, nf : rc ⊑ rf] (
f : ∀[r; r ⊑ rf] (Int) →r Int
) at rc {
val x = f[rc; nf] (1);
try { [r2; n2 : r2 ⊑ rc] (yield2) ⇒ f[r2; n2 ⊕ nf] (x) }
with { (j, k) ⇒ 42 }

};

try { [r1; n1 : r1 ⊑ ⊤](yield1) ⇒
call[r1, r1; n1, 0] { [rg; ng] (i : Int) at rg⇒ do yield1 [ng] (i) }
} with { (j, k) ⇒ do k[0] (j + 1) }

(b) Program in Λcap.

Fig. 3. Example with higher-order function.

want to reason locally about the relation of the call to do Yield and its lexically enclosing handler,
without having to be aware of call’s implementation details.

Subfigure 3 (a) shows the program in System Ξ. Again, the capability-passing translation makes
the lexical relation of the effect call and the outer handler explicit.

The translation to Λcap in Subfigure 3 (b) is now slightly more involved. Handlers are endowed
with regions and evidence as before. The block passed to call is the same as g in the previous
example, it is just anonymous now. Its translation thus is the same as for g, it abstracts a fresh
region rg and evidence ng : rg ⊑ r1 which it then passes to the capability in its body.

As the anonymous block is called indirectly via the parameter f of function call, we have to pass
an appropriate region and evidence to f in the body of call. Since this region and evidence should
be correct for any block f is instantiated with, we abstract over them in the definition of call. This
way, we can provide them at the call-site of call when we know the concrete block argument we
pass for f.

Therefore, call now abstracts two regions and two evidence parameters. Region rc again stands
for the region where call will run later and evidence nc again witnesses that rc is a subregion of
call’s definition region5. The second region rf represents the definition region of the block argument
passed for f. The second evidence nf witnesses that rc is a subregion of rf. Moreover, in the type of f
we can see that, as any other function block, f abstracts a fresh region r and corresponding evidence
witnessing that r is a subregion of rf. When f is called the first time in the body of call, immediately
at the beginning, the current region is rc, so we instantiate the region parameter of f with this
region. The evidence for f hence has to witness the subregion relation rc ⊑ rf which is precisely
what the evidence nf specifically abstracted for f does. When f is called the second time under the
second handler, the current region is not rc anymore but the region r2 abstracted at that handler,
so we instantiate the region parameter of f with r2. To obtain the correct evidence for f we thus
have to compose the evidence nf with evidence witnessing that r2 ⊑ rc. This relation is precisely
witnessed by the evidence n2 abstracted at the handler. The evidence passed to the second call
of f thus is the composition n2 ⊕ nf. In the CPS translation this composition of evidence becomes
function composition, so that multiple Lift functions can be combined to obtain the overall lift if
necessary.

In the application of call, we have to provide appropriate regions and evidence. The first region
argument is again the current region, which is now r1, and the first evidence is n1, because call

5For call, this is the toplevel region ⊤ of which any region is a subregion, so nc is not really necessary in this case.
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was defined outside of the handler. The second region parameter must be instantiated with the
definition-site region of the block argument, which is again r1, as the anonymous block is defined
in place. The second evidence hence has to witness that r1 ⊑ r1, so we have to pass the trivial
evidence 0. Note that in call this evidence is then passed to the calls of the block argument and
eventually to yield1, where for the second call it is composed with n2 beforehand. Hence, yield1
indeed receives the correct evidence in both cases since composing with the trivial evidence
eventually has no effect. In the CPS translation it is just composition with the identity function.
In general, after lift inference each function block should abstract an additional region and

evidence parameter for each of its block parameters. The region stands for the definition-site region
of the block argument and the evidence witnesses that the region in which the whole function
block is called must be a subregion of the region for the block parameter.

2.3 Summary

Summing up, the guiding principle of our lift-inference translation is that each call-site region of a
block is a subregion of its definition-site region. This is facilitated by the second-class property of
blocks in System Ξ. Every function block thus abstracts a fresh region in which it will run later and
evidence witnessing the above principle. When a block is called, its region parameter is instantiated
with the current region and its evidence parameter with appropriate evidence. Hence, we have to
track the current region during the translation and we have to remember the regions in which the
blocks have been defined. We also have to keep track of the correct evidence for each block.

Moreover, for each block parameter of a function an additional region and evidence parameter is
abstracted. The region represents the definition-site of the instantiation of the block parameter
and the evidence witnesses that the whole function is called in a subregion of that definition-site
region. As the block parameter cannot be returned, this ensures that its instantiation again satisfies
our guiding principle.

3 TECHNICAL DEVELOPMENT

In this section, we formally present how the lift-inference translation from our version of System Ξ

to our version of Λcap proceeds. This translation infers correct regions and evidence for a well-typed
term in System Ξ to yield a well-typed term in Λcap. Before doing so, we recap both languages and
detail the changes we have made relative to the original versions of the languages to overcome
technical difficulties. Proofs and the parts of the formalization omitted here can be found in the
extended technical report [Müller et al. 2023b].

3.1 Syntax and Type Systems

We first describe the syntax and type systems of the two calculi. In the following, source calculus
means System Ξ, not to be confused with the source-level language Effekt it underlies.

3.1.1 Source Calculus System Ξ. We start with the source calculus System Ξ, a calculus with
lexical effect handlers in explicit capability-passing style with second-class functions.

Syntax. The syntax of System Ξ is given in Figure 4. The calculus syntactically distinguishes
potentially effectful statements from terms that cannot have control effects, i.e., it is in fine-grain
call-by-value [Levy et al. 2003]. Non-effectful terms are further divided into values and blocks.
Values are either variables or constants, blocks are either variables or anonymous multi-arity
functions. It is important to note that only values can be returned but blocks cannot, that is, blocks
are second class. Still, blocks can be higher-order, i.e., they cannot only abstract value parameters
but also block parameters.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 255. Publication date: October 2023.
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Syntax of Terms:

Statements
s ::= val x = s; s sequencing

| return v returning values
| def f = b; s defining blocks

| b(v, b) calling blocks
| do b(v) performing capabilities
| try { (c) ⇒ s } with { (x, k) ⇒ s } handling effects

Values
v ::= x variables

| () | 0 | 1 | ... | true | ... constants

Blocks
b ::= f , k, c | w

Block Values

w ::= { (x : g, f : f) ⇒ s }

Syntax of Types:

Value Types
g ::= Unit | Int | Bool | ...

Block Types
f ::= (g, f) → g functions

| Cap g g capabilities

Environments:

Value Environment
Γ ::= ∅ | Γ, x : g

Block Environment
Δ ::= ∅ | Δ, f : f

Names:

Value Variables x, y ∈ x, y Block Variables f , g, k, c ∈ f, g, k, Fail, Choice, ...

Fig. 4. Syntax of System Ξ.

Statements can be sequenced using val x = s1; s2 where the result of s1 is bound to variable
x in s2. Defining a local block is done with def f = b; s making block b available in the scope
of statement s by binding it to variable f . We distinguish calls of a function block from calling
capabilities standing for effect operations. For the latter we add the construct do b(v) and also
reflect this on the type level by adding an additional block type for capabilities. Syntactically
distinguishing capabilities is a minor technical difference to the original version of System Ξ, but
it simplifies the presentation of the lift-inference translation which treats capabilities and function
blocks differently. Capabilities cannot have block parameters as this would allow blocks to leave
their defining scopes and therefore break the second-class property. Finally, handling effects is
done in explicit capability-passing style. In try { (c) ⇒ s0 } with { (x, k) ⇒ s } the capability is
bound to c in the scope of the handled statement s0. The implementation of the capability binds its
value parameter x and the continuation k in the implementation statement s.
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Value Typing Γ

↑

⊢ v
↑

: g
↓

Γ(x) = g

Γ ⊢ x : g
[Var] Γ ⊢ 3 : Int

[Lit]

Block Typing Γ

↑

Δ

↑

⊢ b
↑

: f
↓

Δ(f ) = f

Γ Δ ⊢ f : f
[BlockVar]

Γ, x : g Δ, f : f ⊢ s0 : g0

Γ Δ ⊢ { (x : g, f : f) ⇒ s0 } : (g, f) → g0
[Block]

Statement Typing Γ

↑

Δ

↑

⊢ s
↑

: g
↓

Γ Δ ⊢ s0 : g0 Γ, x : g0 Δ ⊢ s : g

Γ Δ ⊢ val x = s0; s : g
[Val]

Γ ⊢ v : g

Γ Δ ⊢ return v : g
[Ret]

Γ Δ ⊢ b : f Γ Δ, f : f ⊢ s : g

Γ Δ ⊢ def f = b; s : g
[Def]

Γ Δ ⊢ b0 : (g, f) → g0 Γ ⊢ v : g Γ Δ ⊢ b : f

Γ Δ ⊢ b0 (v, b) : g0
[App]

Γ Δ ⊢ b : Cap g1 g2 Γ ⊢ v : g1

Γ Δ ⊢ do b(v) : g2
[Do]

Γ Δ, c : Cap g1 g2 ⊢ s0 : g Γ, x : g1 Δ, k : Cap g2 g ⊢ s : g

Γ Δ ⊢ try { (c) ⇒ s0 } with { (x, k) ⇒ s } : g
[Try]

Fig. 5. Type system of System Ξ.

Typing rules. Figure 5 defines the typing rules for System Ξ. Typing for values is entirely standard.
Note that values as well as statements are typed against value types. In contrast, blocks are typed
against block types, that is, they have either function type or capability type. Moreover, there are
two kinds of environments in the typing judgment of blocks, namely Γ for value bindings and Δ for
block bindings. The same is true for statement typing. In particular, when typing a function block,
the value parameters are added to the value environment and the block parameters are added to
the block environment.
Apart from distinguishing two kinds of environment, the rules for sequencing (Val), returning

(Ret), block definition (Def) and function block calls (App) are standard. Compared to the original
version of System Ξ we have an additional rule (Do) for performing capabilities, a consequence
of syntactically distinguishing them from function blocks as mentioned above. A capability has
type Cap g1 g2 where g1 is the type of its parameter and g2 is the return type. Otherwise the rule is
essentially the same as the one for calling function blocks. The crucial rule is Try. The handler
makes the capability available in the scope of the handled statement by adding a binding for it to the
block environment for the handled statement. Since blocks cannot be returned, the capability can
only be used in that scope, thus guaranteeing effect safety without any visible effect system. In the
implementation statement, the continuation parameter has capability type. This is in contrast with
the original version of System Ξ where it has function type. The reason for treating continuations
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Syntax of Terms:

Statements
s ::= val x = s; s sequencing

| return v returning values
| v [d ; e] (v) calling functions
| do v [e] (v) performing capabilities
| try { [r ; n] (c) ⇒ s } with { (x, k) ⇒ s } handling effects

Values
v ::= x, f , k, c variables

| () | 0 | 1 | ... | true | ... constants
| { [r ; n : W] (x : g) at d ⇒ s} closures

Evidence
e ::= n, ... evidence variables

| 0 reflexive evidence
| e ⊕ e transitive evidence

Syntax of Types:

Types
g ::= Unit | Int | Bool | ... primitives

| ∀[r ; W] (g) →d g functions
| Cap d g g capabilities

Regions
d ::= r region variable

| ⊤ toplevel region

Constraints
W ::= d ⊑ d subregion

Environments:

Γ ::= ∅ empty environment
| Γ, r region binding
| Γ, n : W evidence binding
| Γ, x : g value binding

Names:

Variables x, y, f , g, k, c ∈ x, y, f, g, k Fail, Choice, ...

Syntactic Sugar:

def f = v � val f = return v

Fig. 6. Syntax of Λcap.

as capabilities is to simplify the translation to our generalized version of Λcap. For System Ξ this
does not add expressivity as capabilities can be used in the same contexts as function blocks.

3.1.2 Target Calculus Λcap. The target calculus Λcap also is a calculus with lexical effect handlers
in explicit capability-passing style. In contrast to System Ξ, it features first-class functions and has
explicit regions and subregion evidence.

Syntax. The syntax is given in Figure 6. It is again in fine-grain call-by-value, but does not
distinguish blocks from values. So blocks are now values, making them first class. This is also
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Value Typing Γ

↑

⊢ v
↑

: g
↓

Γ(x) = g

Γ ⊢ x : g
[Var] Γ ⊢ 3 : Int

[Lit]

Γ, r, n : W, x : g d ⊢ s0 : g0

Γ ⊢ { [r ; n : W] (x : g) at d ⇒ s0 } : ∀[r ; W] (g) →d g0
[Fun]

Statement Typing Γ

↑

d
↑

⊢ s
↑

: g
↓

Γ d ⊢ s0 : g0 Γ, x0 : g0 d ⊢ s : g

Γ d ⊢ val x0 = s0; s : g
[Val]

Γ ⊢ v : g

Γ d ⊢ return v : g
[Ret]

Γ ⊢ v0 : ∀[r ; W] (g) →d0 g0 Γ ⊢ e : W [r ↦→ d] Γ ⊢ v : g [r ↦→ d] d′
0
= d0 [r ↦→ d]

Γ d′
0
⊢ v0 [d ; e] (v) : g0 [r ↦→ d]

[App]

Γ ⊢ v0 : Cap d′ g1 g2 Γ ⊢ e : d ⊑ d′ Γ ⊢ v : g1

Γ d ⊢ do v0 [e] (v) : g2
[Do]

Γ, r, n : r ⊑ d, c : Cap r g1 g2 r ⊢ s0 : g Γ, x : g1, k : Cap d g2 g d ⊢ s : g

Γ d ⊢ try { [r ; n] (c) ⇒ s0 } with { (x, k) ⇒ s } : g
[Try]

Evidence Typing Γ

↑

⊢ e
↑

: W
↓

Γ(n) = d1 ⊑ d2

Γ ⊢ n : d1 ⊑ d2
[EviVar] Γ ⊢ 0 : d ⊑ d

[Reflexive]

Γ ⊢ e1 : d ⊑ d′ Γ ⊢ e2 : d′ ⊑ d′′

Γ ⊢ e1 ⊕ e2 : d ⊑ d′′
[Transitive]

Fig. 7. Type system of Λcap.

reflected on the level of types in that function and capability types are not in a separate syntactic
category. But, to ensure effect safety, there are regions and subregion evidence. Regions are either
region variables or the toplevel region. Evidence is a witness of the subregion relationship between
regions. It is either an evidence variable, the trivial evidence 0, or the composition e ⊕ e of evidence.

Functions do not distinguish value and block parameters but can now additionally abstract over
a list of regions and a list of evidence. Accordingly, when calling a function, corresponding lists of
regions and evidence have to be supplied. Furthermore, each function is annotated with the region
it is supposed to run in. When calling a capability, it needs to be supplied with evidence but not
with a region. An effect handler not only abstracts a capability but additionally a region and an
evidence variable for the handled statement, whereas the implementation statement stays the same
as in System Ξ. The constructs for sequencing and return are also the same. There is no construct
for the definition of a local function, as it can be easily defined as syntactic sugar using sequencing
now that functions are first class.

Typing rules. Figure 7 shows the typing rules for Λcap. In contrast to System Ξ, there is only
one typing environment, however, in addition to value bindings it can also contain regions and
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evidence bindings. Moreover, the typing judgment for statements has as an additional component
the region in which the statement is typed.
As functions can abstract region and evidence parameters, these are added to the environment

when typing the function body (rule Fun). Moreover, the function has to run in the region its body is
typed in. This is also visible in the type of the function. When sequencing two statements, both are
typed in the same region as the compound statement. Returning a result can be typed in any region.
When applying a function (rule App), its region arguments are substituted not only in the return
type, but also in the types for the evidence and value arguments when typing them. Furthermore,
when substituted in the region annotated in the function type, the resulting region has to coincide
with the region the applied function is typed in. This allows functions to be region-polymorphic.

Rule Do defines the typing for performing capabilities. A capability can only be called in a
subregion of the region annotated in its type. This is witnessed by the evidence supplied in the call.
The region annotated in the type of the capability c abstracted at the handled statement s0 of an
effect handler (rule Try) is the fresh region r also abstracted there. Region r is also the region which
s0 is typed in. Thus, c can only be called in a subregion of r , i.e., within the handled statement. This
ensures effect safety. The additionally abstracted evidence n witnesses that r is a subregion of the
region d the overall statement is typed in. The regions and subregion evidence hence precisely
reflect how handlers are nested. The implementation statement is typed in the outer region d which
is also the region for the continuation. In constrast to the original version of Λcap, the continuation
has capability type, not function type. This allows to call the continuation not only in region d but
also in any subregion of d . Our version is thus more expressive as continuations can, for example,
be called under further effect handlers, i.e., we lift the restriction of scoped continuations imposed
by the original version. This is important in order to fully support a lift-inference translation from
System Ξ since there no such restriction for continuations exists.
The typing of evidence is rather straightforward. Evidence variables are looked up in the envi-

ronment. The trivial evidence 0 witnesses that any region is a subregion of itself. Composition of
evidence shows that subregioning is transitive.

3.2 Operational Semantics

We define the operational semantics of the two calculi in terms of an abstract machine. The abstract
machine for Λcap is essentially the same as the one for System Ξ. There are only two minor
differences. First, there is no stepping rule for the definition of local functions in Λcap as there is
no separate construct for them. Second, there are regions and evidence. However, the latter are
irrelevant for the machine semantics as it proceeds by searching delimiters with labels on the meta
stack and does not use region and evidence information.

As the operational semantics of both languages is so similar, it is not that interesting with regards
to lift inference. Nevertheless, knowing the operational semantics helps to understand lifting, in
particular with respect to continuations. Therefore, we briefly sketch how the machine works, and
also where it differs from the original versions of the two calculi.
A machine state ⟨ s ∥ K ⟩ contains a statement s to be evaluated and a runtime meta stack K

which is a list of delimited stacks. A stack is a list of frames ending with a delimiter #l containing
a label l. This is a minor technical difference to the original version of the machine which treats
delimiters as regular frames and does not explicitly segment the meta stack into delimited stacks.
It facilitates the correctness proof of the CPS translation from our generalized version of Λcap to
System F.
The machine implements multi-prompt delimited control [Dybvig et al. 2007]. Upon execution

of a handler statement, a fresh label is generated and a new stack consisting only of a delimiter
with that label is pushed onto the meta stack.
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(try) ⟨ try { (c) ⇒ s0 } with { (x, k) ⇒ s } ∥ K ⟩ → ⟨ s0 [c ↦→ v] ∥ #l :: K ⟩
where l = generateFresh() and v = capl { (x, k) ⇒ s }

Execution then continues with the handled statement where the abstracted capability variable
is replaced by a runtime capability which contains the just generated label l and the handler
implementation. When encountering a call to a capability the machine transitions to unwinding
mode and pops stacks off the meta stack until the correct label is found. These stacks are collected
in a resumption which is used as continuation.
It is exactly this runtime search of correct handlers that we seek to avoid by using lifting

information. To make this possible, we make sure that the evidence passed to capabilities precisely
reflects the labels on the runtime meta stack and we take care that this invariant is preserved
during the execution of the machine. In fact, at runtime each evidence becomes a list of appropriate
labels which is adapted as the machine proceeds. The invariant ensures that evidence always
contains the correct lifting information. While being irrelevant for the machine semantics, this
is critically important for the CPS translation, since the latter uses evidence instead of labels (see
Subsection 3.3).

The main difference to the original version of the machine is how a call of a continuation proceeds.
The reason we have to treat this differently is that, compared to the original version of Λcap, we
allow the use of continuations under further handlers, in order to fully support System Ξ in the
lift-inference translation. A continuation may contain capabilities which have been provided with
evidence. When calling the continuation under further handlers in the implementation statement,
additional delimiters are installed on the meta stack that were not present when the continuation
was created. Thus, the evidence for the capabilities inside the continuation does not precisely reflect
the labels on the meta stack which violates the critical invariant described above.

To make the evidence correct again, we have to make the additional delimiters “invisible” for the
continuation. This is achieved by treating continuations as capabilities as well. This way, when a
continuation is called, it first captures the additional stacks with these delimiters by unwinding as
described above (which is again reflected by the evidence passed to the continuation itself), and
packages them into one resumption frame. Only then, the continuation is executed in the usual way
by rewinding. Such a resumption frame acts a bit like an “underflow” frame [Farvardin and Reppy
2020] when returning to it, in the sense that execution then first continues with that resumption.
When unwinding, however, it is treated just as another ordinary frame so that the stacks inside of
it do not inferfere with the unwinding. Hence, when a call to a capability inside the continuation is
encountered, it only sees the labels present on the meta stack when the continuation was created
so that its evidence is correct.

This difference in how continuations are treated compared to the original version does not impact
the final result of the execution for all programs that can be written in the original versions of the
calculi. It leads, however, to another minor difference to the original machine. As the continuation
capabilities are always delimited by the next label on the meta stack at the point of their creation,
execution of a closed statement s always starts with a delimiter with a special toplevel label on
the otherwise empty meta stack, that is, in state ⟨ s ∥ #start :: • ⟩. This ensures that there also is a
delimiting label for continuations of try-statements in the toplevel region.

3.3 CPS Translation to System F

For the original version of Λcap Schuster et al. [2022b] give a typability- and semantics-preserving
CPS translation to pure System F. This CPS translation carries over almost unchanged to our version
of Λcap. Still, it is instructive to briefly repeat the core idea, in particular, to see how evidence
enables efficient compilation.
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Translation of Statements:
...

SJ do v0 [e] (v) K = EJ e K T J g2 K (VJ v0 KVJ v K)
SJ do k[e] (v) K = EJ e K T J g2 K (_k0 .VJ k KVJ v K k0)
SJ try { [r ; n] (c) ⇒ s0 } with { (x, k) ⇒ s } K = Reset ((Λr . _n. _c. SJ s0 K)

(Cps T J d K T J g K) (Lift) (_x . _k. SJ s K))

Auxiliary Definitions:

Cps R A = (A→ R) → R

Reset : Cps (Cps R A) A→ Cps R A

Reset m = m (_x . _k. k x)

Lift : ∀a. Cps R a→ Cps (Cps R R′) a

Lift = Λa. _m. _k. _j. m (_x . k x j)

Fig. 8. CPS Translation from Λcap to System F.

The idea of the CPS translation is to use evidence information to decide how to lift a capability,
i.e., which parts of the runtime meta stack need to be captured. Or put in terms of the operational
semantics, which delimiters have to be jumped over when unwinding. As a result, no runtime
search for the correct label on the meta stack is needed anymore. To this end, the translation targets
so-called iterated CPS [Schuster and Brachthäuser 2018], which uses one continuation parameter
for each stack delimited by a label.

The full CPS translation is omitted here, Figure 8 only shows how handlers and calls of capabilities
are translated. Note that the translation is actually defined over typing derivations, but we only
write the term here. In the translation of a handler the handled statement becomes a function
applied to three arguments. The region parameter r represents the polymorphic answer type that
has to be instantiated appropriately (g and d are the overall type and region of the try-statement as
in typing rule Try), the evidence variable n is instantiated with the function Lift and the capability
parameter c is instantiated with the translated implementation statement. The whole term is then
applied to an empty continuation acting as a delimiter by meta function Reset. The function Lift

increases the number of continuation parameters of its argument m by one, hence m is lifted to a
different region by capturing one more delimited stack. Note that the explicitly abstracted type
parameter a is the immediate return type (see also the application of a capability below), while the
(answer) types R, R′ are determined by the surrounding regions.

In the CPS translation of performing capabilities the capability is applied to its argument. The
resulting term is then fed into the translated evidence of the capability (in the type argument T J g2 K,
g2 is the return type of the capability as in typing rule Do). This evidence always eventually consists
of a composition of evidence variables bound at handlers6, which means that it is a composition of
Lift-terms. Thus, the translated evidence term determines how far the capability is lifted, that is,
how many stacks of the meta stack are captured.
As explained above we also treat the continuation as a capability and provide it with evidence.

This ensures that the handler capabilities inside the continuation are correctly lifted since the
continuation itself is lifted to the correct region. The CPS translation for continuation capabilities is
almost the same as for handler capabilities, the only difference being that the applied continuation
is [-expanded. This is necessary in order to make the following simulation theorem true.

6It may further be interspersed with trivial evidence which is, however, translated to the identity function.
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Theorem 3.1 (Simulation for the CPS Translation).

If ⊢ M ok and M→ M′, thenMJ M K→∗MJ M′ K.

M denotes a machine state. The operational semantics of Λcap hence corresponds to reduction in
System F. As a corollary we obtain that evaluation is preserved by the CPS translation.

Corollary 3.2 (Evaluation for the CPS Translation).

If ∅ ⊤⊢ s : Int and ⟨ s ∥ #start :: • ⟩ →
∗ ⟨ return v ∥ • ⟩,

then Reset(SJ s K) done →∗ doneVJ v K.

Here done is a special toplevel continuation and the Reset is necessary due to the presence
of the toplevel label. As the operational semantics of our version of Λcap differs a bit from the
original version, the proof of the simulation theorem and the necessary translation of the runtime
constructs had to be adapted. In contrast, the proof of the following typability preservation stays
almost unchanged.

Theorem 3.3 (Typability Preservation for the CPS Translation).

If Γ d ⊢ s : g , then T J Γ K ⊢ SJ s K : Cps T J d K T J g K.
If Γ ⊢ v : g , then T J Γ K ⊢ VJ v K : T J g K.

3.4 Li�-Inference Translation

We now present the lift-inference translation from System Ξ to Λcap. This is our main contribution.
The translation is defined over typing derivations of System Ξ and is supposed to take well-typed
terms in System Ξ to well-typed terms in Λcap, so we translate types and terms. In the clauses for
the terms we only write the term instead of the whole typing derivation.

The translation is defined in Figure 9. As the two calculi are quite similar, the translation mainly
proceeds by endowing terms in System Ξ with appropriate region and evidence abstractions
and applications in the right places. To this end, we maintain a lifting environment E during the
translation which is used to remember which blocks have been bound so far and in what region,
while we descend recursively.

This environment is modeled as a record consisting of four components. First, it contains the
current region d of the term to be translated. Second, it contains the block environment Δ of the
term to be translated. The types of the blocks in Δ are not needed in the lifting environment and
we usually omit them, but it eases presentation a bit to just write Δ. The third component is a map
m from the domain dom(Δ) of the block environment to pairs of regions (Reg) and evidence (Ev).
The region stands for the region of the definition-site of the entry and the evidence is supposed
to witness that the current region d is a subregion of the definition-site region. This invariant is
enabled by the second-class property of blocks which guarantees that each call-site of a block is in
a subregion of the region of the definition-site. To maintain the invariant, the evidence for each
block in the map has to be adapted when the current region changes during the translation. As a
fourth component the lifting environment contains a typing environment ΓE which consists of all
the regions and evidence that are present in map m. The above invariant can now more formally
be captured in the following definition.

Definition 3.4 (Soundness of Region-and-Evidence Environment).

We call E = { d, Δ, m, ΓE } sound if ΓE ⊢ CJ f KE : d ⊑ RJ f KE for all f ∈ dom(Δ).

Here the functions RJ · K and CJ · K are lookup functions for the region and evidence component
of blocks in the map m, respectively (see Figure 9).
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Region-and-Evidence Environment:

E = { d, Δ, m : Map(dom(Δ), Reg × Ev), ΓE }

Translation of Types:

T J (g) → g0 K
d

= ∀[r ; r ⊑ d] (g) →r g0

where r = generateFresh()

T J (f) → g0 K
d

= ∀[r, rf ; r ⊑ d, r ⊑ rf ] (T J f Krf ) →r g0

where r, rf = generateFresh()

T J Cap g1 g2 K
d

= Cap d g1 g2

Translation of Environments:

T J ∅ KE = ∅

T J Δ, f : f KE = T J Δ KE , f : T J f K
RJ f KE

Translation of Blocks:

BJ f KE = f

BJ { (x : g) ⇒ s0 }K
E

= { [r ; n : r ⊑ E.d] (x : g) at r ⇒SJ s0 KE ⊕ n }
where r, n = generateFresh()

BJ { (f : f) ⇒ s0 }K
E

=

{ [r, rf ; n : r ⊑ E.d, nf : r ⊑ rf ] (f : T J f Krf ) at r ⇒SJ s0 KE
′

}

where r, n, rf , nf = generateFresh() and E′ = E ⊕ n, f ↦→ (rf nf ), rf , nf : r ⊑ rf

Translation of Statements:

SJ return v KE = return v

SJ val x = s0; s KE = val x = SJ s0 KE; SJ s KE

SJ def f = b; s KE = def f = BJ b KE; SJ s KE, f ↦→ (RJ b KE CJ b KE )

SJ b(v) KE = BJ b KE [E.d ; CJ b KE ] (v)

SJ b(b0) K
E

= BJ b KE [E.d, RJ b0 KE; CJ b KE , CJ b0 KE ] (BJ b0 KE)

SJ do c(v) KE = do c[ CJ c KE ] (v)

SJ try { (c) ⇒ s0 } with { (x, k) ⇒ s } KE =

try { [r ; n : r ⊑ E.d] (c) ⇒ SJ s0 KE ⊕ n, c ↦→ (r 0) } with { (x, k) ⇒ SJ s KE, k ↦→ (E.d 0) }

where r, n = generateFresh()

Lookup and Adaptions of Region-and-Evidence Environment:

RJ f KE = d where (d, e) = E.m(f )

RJ w KE = E.d

CJ f KE = e where (d, e) = E.m(f )

CJ w KE = 0

∅ ⊕ n = ∅

(m, f ↦→ (d n0)) ⊕ n = m ⊕ n, f ↦→ (d n ⊕ n0)

{ d, Δ, m, ΓE } ⊕ n = { r, Δ, m ⊕ n, (ΓE, r, n : r ⊑ d) } where n : r ⊑ d

{ d, Δ, m, ΓE }, f ↦→ (d
′ e) = { d, (Δ, f ), (m, f ↦→ (d′ e)), ΓE }

{ d, Δ, m, ΓE }, r, n : d ⊑ r = { d, Δ, m, (ΓE, r, n : d ⊑ r) }

Fig. 9. Li�-Inference Translation from System Ξ to Λcap.

Translation of values. Values in System Ξ are either variables or constants, both of which are
translated trivially to the same terms in Λcap. Similarly, value types g in System Ξ are only base
types and thus remain unchanged. Accordingly, value environments Γ need not be translated.
Therefore, these parts of the calculus are omitted from the presentation in Figure 9.
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Translation of blocks. Blocks in System Ξ are translated to values in Λcap. Just as value variables,
block variables are translated trivially. For function blocks we only show the case of a function
with one parameter and treat the cases for a value parameter and a block parameter separately to
ease presentation. Multi-arity functions are translated accordingly in the obvious way.
In either case the translated function abstracts a fresh region r and fresh evidence n which

witnesses that r is a subregion of the current region. Moreover, the function is annotated to run in
the abstracted region r , i.e., it is region-polymorphic, but the evidence enforces the constraint that
the actual region in which the function will run must be a subregion of the current region of the
definition-site.

In the case of a value parameter the body of the function is translated recursively but the lifting
environment E is adapted to E ⊕ n. This has three effects. The current region is changed to be the
abstracted region r . The evidence component of all entries in the map m of E is composed with
the additional evidence n. This is necessary to maintain the above-mentioned soundness invariant
since the current region has changed. Moreover, r and n are added to the typing environment ΓE .
In the case of a block parameter f : f the translated function abstracts an additional region

rf which stands for the region of the definition-site of f and an additional evidence parameter
nf : r ⊑ rf witnessing that the region r the function will run in is a subregion of rf . As the
definition-site region of f is only known when it is actually instantiated, it is necessary to abstract
over it. This region is also used to translate the type f of f . The constraint that nf imposes says that
the block the parameter f later is instantiated with must be defined in a superregion of the region
in which the whole function is called. The lifting environment for the translation of the body is first
adapted in the same way as in the case of a value parameter, but must then be further adapted by
adding an entry for f . This entry consists of the pair (rf nf ) which satifies the soundness invariant
since the current region now is r . Moreover, rf and nf must be added to the typing environment ΓE .
Note that extending the lifting environment E with new entries for blocks and with additional

region and evidence variables is both written as comma-separated concatenation, but that the two
extensions affect different components of E.

Translation of block types. The translation of block types does not need the lifting environment
as additional input but only a region standing for the region of the definition-site of the block. For
functions, the additionally abstracted region and evidence parameters for the translated function
itself and each of its block parameters are directly reflected in the type. For capability types the
given region is simply added as the region for the capability. The translation of block environments
proceeds by pointwise translation of the types of the block bindings. However, as the region input
must be the definition-site region for each block, we have to look this region up in the lifting
environment E using the lookup function RJ · K for regions. The translation of block environments
therefore does need E as input.

Translation of statements. The translation for returning values is trivial and for sequencing of
statements we simply translate the substatements recursively with the same environment. The
definition of a local block b is a bit more interesting. It is translated to the definition of the translated
block (note that this is syntactic sugar in Λcap), but for the translation of the remaining statement
we have to adapt the lifting environment E by inserting an entry for this newly defined function.
Now there are two cases for b. Either it is a block variable g (i.e., the definition is just aliasing), then
it must be in the environment and we have to look up the correct region and evidence for g in E.
Or it is a block value w, then there is no binding in the environment yet. In this case, the region
of the definition-site of the block is the current region and hence the correct evidence is 0. The
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translation for this case could thus instead be defined as

SJ def f = w; s KE = def f = BJ w KE; SJ s KE + f ↦→ (E.d 0)

However, since the lookup functions RJ · K and CJ · K are defined to yield exactly the above
results for block values, we do not need to distinguish cases in the translation in Figure 9.
Calling a function block b is translated to calling the translated block. We again only show

the cases for one value argument and one block argument, but the generalization to multi-arity
functions is again done in the obvious way. In either case the translated block has abstracted
a region and an evidence parameter. The region parameter stands for the region in which the
function runs, so we instantiate it with the current region. Remember that the evidence parameter
must witness that the region parameter is a subregion of the definition-site region of b. But as the
region parameter was instantiated with the current region we can exploit the carefully maintained
soundness and simply look the correct evidence up in the lifting environment. Note that if b is an
anonymous block value, the definition-site region is the current region and so the trivial evidence
yielded by the lookup function for evidence is correct. In the case of a block parameter we have
to translate the block argument b0 as well, of course. But we additionally have to supply a region
and evidence for the corresponding parameters that have been abstracted for the block parameter.
Both of these can simply be looked up, too, since the region lookup will yield the region of the
definition-site of b0 and soundness again makes sure that the corresponding evidence is correct.
Translating an applied capability is similar to calling a function with a value parameter, the

needed evidence is simply looked up. The difference is just that no region needs to be supplied
as capabilities are not region-polymorphic. The region of their definition-site always is the fresh
region abstracted at the translation of the corresponding handler statement. This can be seen in
the translation of a handler which consists of the translation of the handler statement and the
translation of the implementation statement. The former is similar to how function blocks with a
block parameter are translated. The lifting environment E is first adapted with the newly abstracted
evidence n and then an entry for the capability c is added. As the region for this entry now is the
current one, the corresponding evidence is trivial, i.e., 0. Note that since the fresh abstracted region
is already added to the typing environment ΓE by E ⊕ n, it is not necessary to do this in an extra
step. For the implementation statement, no region and evidence is abstracted, so we only have to
add an entry for the continuation parameter k to E. The region for k is the current one, that is, the
one the whole handler is defined in. The evidence for k thus again is 0.

3.4.1 Example. To illustrate the lift-inference translation, we consider again the example from
Subsection 2.2, or more precisely the definition of call.

def call = { (f : Int→ Int) ⇒
val x = f(1);
try { (yield2) ⇒ f(x) }
with { (j, k) ⇒ 42 }

};

Starting with the empty lifting environment E = { ⊤, ∅, ∅, ∅ }, we show how the environment
changes as the translation proceeds. In the first step, regions and evidence for call and f are
abstracted, the type of f is translated with the abstracted region and the region annotation is added.
Thus, we obtain

def call = { [rc, rf; nc : rc ⊑ ⊤, nf : rc ⊑ rf] (
f : ∀[r; r ⊑ rf] (Int) →r Int

) at rc⇒SJ ... KE
′

};
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The lifting environment for the recursive translation of the body is adapted since we have entered
a new region and since we have to add a new entry for the block parameter. It becomes

E′ = E ⊕ nc, f ↦→ (rf nf), rf, nf : rc ⊑ rf
= { rc, (f), (f ↦→ (rf nf)), (rc, nc : rc ⊑ ⊤, rf, nf : rc ⊑ rf) }

In the translation of the body, the translation of the first application of f is a simple matter of
looking up the current region and the evidence for f in the environment. The effect handler is
endowed with a fresh region and evidence and the substatements are translated recursively. As the
implementation statement is just a value, it is translated trivially, and we obtain

val x = f[rc; nf] (1);

try { [r2; n2 : r2 ⊑ rc] (yield2) ⇒ SJ f(x) KE
′′

}

with { (j, k) ⇒ 42 }

The lifting environment is adapted for the new region we have entered and a new entry for the
capability is added. Importantly, the evidence for the existing binding for f is adapted and we find

E′′ = E′ ⊕ n2, yield2 ↦→ (r2 0)

= { r2, (f, yield2), (f ↦→ (rf n2 ⊕ nf), yield2 ↦→ (r2 0)), (ΓE′ , r2, n2 : r2 ⊑ rc) }

The translation of the second application of f is again a simple matter of looking up the current
region and the evidence for f in the environment. As the latter is kept sound during the translation,
the evidence is exactly right,

f[r2; n2 ⊕ nf] (x)

3.5 Properties of Li� Inference

For the lift-inference translation to be sensible it should be typability- and semantics-preserving.

Typability preservation. For the proof of typability preservation we make heavy use of the
soundness of the lifting environment. To do so, we need the following lemma stating that soundness
is maintained during the translation.

Lemma 3.5 (Soundness of Environments for the Lift-Inference Translation).

All adaptions of lifting environments made by the lift-inference translation take sound environments

to sound environments.

This enables the theorem that the translation takes well-typed terms in System Ξ to well-typed
terms in Λcap.

Theorem 3.6 (Typability Preservation for the Lift-Inference Translation).

For E = { d, Δ, m, ΓE } sound,

if Γ Δ ⊢ s : g , then ΓE, Γ, T J Δ KE d ⊢ SJ s KE : g ;

if Γ Δ ⊢ b : f , then ΓE, Γ, T J Δ KE ⊢ BJ b KE : T J f K
RJ b KE ;

if Γ ⊢ v : g , then ΓE, Γ ⊢ v : g .

Since the empty environment ∅ = { ⊤, ∅, ∅, ∅ } is trivially sound, Theorem 3.6 implies typability
preservation for the translation of closed terms starting with the empty environment.

Semantics preservation. For semantics preservation note that the operational semantics of both
calculi mainly differs in the presence of regions and evidence in Λcap. As noted before, these are
irrelevant for the operational semantics and can thus be erased. Then the only difference is that
there is no rule for reduction of function definitions in Λcap. It is replaced by two consecutive rules.
Hence, we obtain the following result.
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Theorem 3.7 (Evaluation for the Lift-Inference Translation).

If ∅ ∅ ⊢ s : g and ⟨ s ∥ #start :: • ⟩ →
n + k ⟨ return v | | • ⟩,

then ⟨SJ s K∅ ∥ #start :: • ⟩ →
n + 2k ⟨ return v | | • ⟩,

where k is the number of steps for function definitions and n the number of other steps in System Ξ.

Note that together with the corresponding results of the papers we build on (see the overview in
Figure 1), the above theorems guarantee typability and semantics preservation along the whole
compilation pipeline down to System F, fully proven. Hence, a well-typed term in Effekt is guaran-
teed to have the same semantics after translation to System F. In particular, type safety implies
effect safety and thus guarantees that no effect goes unhandled.

4 EVALUATION

To evaluate our approach, we have implemented lift inference for the Effekt language. This way,
we could close the gap illustrated in Section 1 and write benchmark programs directly in Effekt. We
first describe the implementation and some limitations, before we discuss the benchmark results.

4.1 Implementation

Effekt is a functional language with support for lexical effect handlers, effect inference, data types,
type polymorphism, interface types that generalize functions, backtrackable local state, and many
more features. The implementation of the compiler amounts to around 23k lines of code in Scala.
For this paper, we have extended the Effekt compiler in two ways. We have implemented the
lift-inference translation presented in Subsection 3.4, and we have implemented a new backend
targeting SML in continuation-passing style.

4.1.1 Li� Inference. The overview in Figure 1 doubles as an overview over the compiler phases in
the Effekt compiler. A translation of the source language to explicit capability-passing System Ξ,
which is called Core in the implementation, was already implemented by Brachthäuser et al.
[2020]. To evaluate the feasibility of the translation described in this paper, we have added a new
intermediate representation that corresponds to Λcap, which is called Lifted in the implementation.
Lifted is typed and includes explicit subregion evidence, but regions are erased from the type level.

Both Core and Lifted differ from the presentation in this paper in that they also support various
other features of the language, such as data types, pattern matching, local mutable state, and more.
Like Leijen [2017], the Effekt compiler also distiguishes potentially effectful expressions from
pure expressions, in order to generate more efficient code. The implementation of lift inference
itself is a straightforward translation of the algorithm presented in Section 3.4 to Scala. The lifting
environment E is implemented as a Map[Symbol, List[Lift]] mapping block variables (i.e.,
Symbols) to a chain of evidence variables (i.e., Lifts) that witness the subregion relationship.

4.1.2 SML Backend in CPS. The translation from Λcap to System F in iterated continuation-
passing style is conceptually described by Schuster et al. [2022b]. However, they do not present
an implementation. As a second implementation step for this paper, we have thus implemented a
translation from Lifted to StandardML [Milner et al. 1997] in continuation-passing style. Specifically,
we target MLton since it is a whole program optimizing compiler. We conjectured that MLton could
discover many of the static abstractions identified by Schuster et al. [2020] at compile-time and
thus heavily optimize the generated programs in CPS. We can, however, imagine that a setting
with separate compilation could profit from lift inference as well. For example, our approach might
be applied within a compilation unit and one might moreover rely on link-time optimizations or
just-in-time compilation to obtain further improvements from lift inference at runtime. We leave
closer investigation of this to future work.
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While the translation conceptually translates effectful programs to pure System F, in the toplevel
region our implementation supports all native effects present in the target language, like native
mutable references, file IO, etc.

Our CPS translation employs standard techniques to avoid administrative V- and[-redexes [Danvy
and Filinski 1992; Schuster and Brachthäuser 2018], is curried [Hillerström et al. 2017; Schuster et al.
2022b], but not fully iterated [Schuster and Brachthäuser 2018; Schuster et al. 2020], which is to
say that we do not abstract more than one continuation in function definitions. Rather, additional
continuation parameters are added by instantiating the answer type with another layer of CPS as
required.
Effekt has higher-rank polymorphism originating from function parameters as well as from

polymorphic effect signatures (e.g., effect Exc { def raise[A](): A }). Since SML is a
language with a Hindley-Milner-style [Hindley 1969; Milner 1978] type system, it does not support
higher-rank polymorphism. Due to this limitation, our SML backend currently does neither support
higher-rank function types nor polymorphic effect signatures.

Another problem is that the translation fromΛcap to System F presented by Schuster et al. [2022b]
makes heavy use of higher-rank types. Region abstractions are translated to type abstractions
which makes region-polymorphic function parameters have a higher-rank type. Moreover, the type
of subregion evidence d1 ⊑ d2 is translated to ∀a. Cps T J d2 K a→ Cps T J d1 K a. Functions that
take evidence parameters, which are virtually all translated functions, have rank-2 type. While this
might sound like a severe limitation, we observed that in many functions evidence is not actually
used but only passed on and thus can often be treated parametrically. When evidence is actually
used, its type argument is often inferred monomorphically. However, using the same evidence at
two different types in HM will lead to a type mismatch, a problem not present in System F.

In order to admit more Effekt programs to be translated to SML, we perform evidence monomor-
phization, where we effectively partially evaluate programs with respect to evidence and specialize
effect handler implementations to the region they are called in. We consider both, the limitation of
SML not supporting higher-rank types, as well as the implemented evidence monomorphization
as non-essential aspects of the present paper. We could have chosen an arbitrary different target
platform that does support higher-rank types.

4.2 Benchmarks

One of our goals was to reproduce the performance results of Schuster et al. [2020] in a realistic
source-level language, in particular, their conjecture that specialized optimizations or special
reduction theories are not needed to remove abstraction overhead; rather, existing optimizing
compilers can do the job. In Table 1 we present the results of measuring the running time of
programs written in Effekt and compiled to our SML backend against the running time of the
same programs written in other languages with effect handlers. The benchmark programs are
taken from a community benchmark suite that has been designed specifically for effect handler
implementations [Hillerström et al. 2023]. The repository contains detailed explanations for each of
the benchmark programs. Benchmarks were conducted on a 12th Gen Intel(R) Core(TM) i7-1255U
running Ubuntu 22.04.

4.2.1 Systems. We compare Eff, Multicore OCaml, and Koka with our own implementation in
Effekt. Eff [Karachalias et al. 2021; Saleh et al. 2018] is a language with effect handlers and specific
optimizations for those. After optimization it generates OCaml code which is then compiled with
ocamlopt 4.14.1. Unfortunately, investigation of the generated code reveals that in many programs
the specialization of functions to handlers is not triggered. Multicore OCaml [Dolan et al. 2014]
4.12.0 is a language with effect handlers and a very fast runtime. While it does not officially support
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Table 1. Benchmark results comparing Eff, OCaml, Koka, our implementation of li� inference in Effekt, and a
hand-optimized baseline. Fastest mean for each benchmark is highlighted in gray.

Mean time in ms (standard deviation)
Benchmark Eff OCaml Koka Effekt Baseline

Countdown (200M) 72.0 (±13.2) 1976.1 (±26.6) 1598.0 (±24.0) 44.5 (±1.0) 44.5 (±0.9)
Fibonacci (42) 1093.6 (±5.5) 1161.5 (±12.0) 1222.6 (±27.0) 1335.4 (±12.0) 1335.4 (±24.5)
Product Early (100k) 535.7 (±71.9) 113.0 (±0.4) 1506.6 (±20.0) 238.2 (±33.4) 113.0 (±0.9)
Iterator (40M) 516.3 (±17.6) 195.4 (±1.3) 1082.0 (±9.6) 92.5 (±10.7) 13.7 (±0.5)
Queens (12) 262.2 (±6.1) 635.6 (±1.8) 2643.5 (±26.6) 117.2 (±0.3) 96.6 (±1.0)
Tree Explore (16) 161.1 (±3.8) 142.9 (±2.2) 278.4 (±5.1) 187.1 (±4.4) 179.1 (±2.0)
Triples (300) 125.0 (±4.4) 315.5 (±3.3) 2635.8 (±11.4) 30.0 (±0.5) 25.1 (±0.4)
Resume Non-tail (10k) 182.4 (±15.9) 190.4 (±1.0) 1601.5 (±16.6) 85.9 (±3.5) 62.5 (±3.0)
Parsing (20k) 2061.7 (±177.3) 1443.5 (±14.6) 3220.4 (±253.6) 88.6 (±0.8) 88.1 (±1.0)

multiple resumptions, which some benchmarks use, it has limited support for those which is
sufficient to run these benchmarks. Koka [Xie and Leijen 2021] is a language with effect handlers,
a fast runtime, and an optimizing compiler. The Koka compiler generates C code which then is
further compiled with gcc. Our own Effekt compiler produces code in Standard ML and then uses
MLton 20210117 to compile it. We instruct MLton to choose numbers to be 64bit integers to match
the behavior of the other languages. Finally, as a baseline, we have taken the programs produced by
our Effekt compiler and minimized and hand-optimized them using native effects where possible.

4.2.2 Results. Our findings (presented in Table 1) are generally positive. Effekt outperforms the
other languages in most benchmarks, sometimes by an order of magnitude. Speedups range from
around 1.6x–16.3x to the next best system for each particular benchmark. On the other side, we
only observe slowdowns of 1.2x–2.1x compared to the best system for the specific benchmark. Our
benchmarks are available as an artifact (see Section 7).
The Countdown benchmark uses the state effect to tail-recursively count down from a given

number. Some implementations (OCaml and Koka) use references to implement the state effect,
others (such as Eff and ours after evidence monomorphization) modify the answer type to be a
function taking the state. In OCaml and Koka getting and setting the state goes through performing
an effect operation, while Eff and Effekt are able to optimize this indirection away.
The Fibonacci benchmark does not actually use effect handlers. Eff, Koka, and Effekt generate

special code for pure functions and the performance is competitive. The code generated by Eff and
Effekt (after MLton optimizations) is very similar to the handwritten direct-style OCaml code and
runtime differences amount to the different language runtimes used to execute the code.

The Product Early benchmark pushes 1,000 frames onto the stack and then discards all of them
by throwing an exception. We can see a slowdown compared to native exceptions in OCaml and in
the MLton baseline. This is due to the fact that the implementations of exceptions in both runtimes
are very efficient and indeed faster than our approach of translating to CPS.

The Iterator benchmark models push streams by using an effect to emit values. The handler uses
state to add all values and calls the continuation in tail position. We can see speedups compared
to OCaml of around 2.1x. The optimizations performed by Eff seem to be blocked and thus the
handler is not optimized away. We expect this problem to be technical and not fundamental in their
approach.
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The Queens benchmark searches for a solution to place n queens on a chessboard. It heavily uses
continuations in a non-trivial way to perform backtracking search. We can observe a speedup of
2.2x over Eff, but note again that their optimizations seem to be blocked.

The Tree Explore benchmark constructs a tree and then traverses it to collect all leaves. It uses a
choice effect to simulate a non-deterministic traversal. We can see a slowdown of 1.3x compared to
OCaml. The reason for this is again the difference between OCaml and MLton. Indeed, we have
translated the code we generate from Standard ML to OCaml and observed that it runs faster than
the OCaml variant using native effects.

The Triples benchmark makes heavy use of continuations to perform a backtracking search. We
see speedups of around 4.2x compared to Eff, but yet again note that the rewrite rules of Karachalias
et al. [2021] seem not to be applied fully.
The Resume Non-tail benchmark calls an effect operation in a loop. The handler resumes in

non-tail position and thus aggregates N stack frames. After the loop returns, the stack frames are
popped one-after-another. Again, we can see speedups of 2.1x over Eff, where the rewrites are not
fully applied.
Finally, the Parsing benchmark defines a streaming parser which uses three effects:

def parse(a: Int): Unit / {Read, Emit, Stop} = ...

The Read effect reads a character, the Emit effect emits the result of parsing a line, and the Stop
effect stops when an unrecognized character is found. The function parse is used under three
handlers, one for each of the effects:

sum { catch { feed(n) { parse(0) } } }

The program has non-trivial control flow, which is abstracted away by the use of effect handlers.
Moreover we could use the same function parsewith a different source of characters and a different
target of emitted values. Our Effekt implementation significantly outperforms the other languages
by a factor of 16.3x–36.3x. It is the only benchmark that relies on evidence monomorphization
in order to compile. Our implementation specializes this function to the handlers surrounding it,
which after optimization results in a single tight loop, which is exactly our original goal: to remove
all abstraction overhead introduced by using effect handlers.
In general, our approach works better in the cases where effects and resumptions are used

extensively. In these cases we observe large speedups over the other implementations. That said,
the optimizations for Eff were often blocked in these benchmarks. We would expect the results
for Eff to be much closer to ours, if the optimizations kick in. Our results are often quite close
to the hand-optimized baseline. In these cases our implementation, of which lift-inference is an
integral part, is able to remove all abstraction introduced by the use of effect handlers to structure
the program. In the other cases, more investigation is needed in order to remove the gap between
compiled code using effect handlers and hand-optimized code using native effects.

5 RELATED WORK

We have presented a translation from System Ξ, a calculus with second-class capabilities to Λcap, a
calculus with region-based effects. In combination with a translation to iterated CPS this enables
efficient compilation of effect handlers. In this section, we compare our approach to existing work.

5.1 Efficient Compilation of Effect Handlers

Closely related is the work on explicit effect subtyping for algebraic effect handlers in Eff [Saleh
et al. 2018]. Their main motivation is to use this explicit information in the optimization of programs
using effect handlers [Karachalias et al. 2021]. In particular, they define source-to-source rewrite
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rules on an intermediate representation called ExEff. The rewrite rules are designed to propagate
handlers down until they reach an effect operation in which case the effect operation can be
statically reduced. Intermediate frames are aggregated in the return clause of the handler. While our
motivation is ultimately the same, our work is in the context of lexical effect handlers as they appear
in Effekt. Also, we do not define a reduction theory on a language with effects and handlers, but
instead (via Λcap) define a translation to System F in CPS. This way, existing optimizing compilers
for functional languages (such as SML) can readily be used. Karachalias et al. [2021] support first-
class functions which makes their language more general than ours. While their explicitly typed
language applies subtyping coercions to arbitrary computations, we pass evidence values along
and only use them at effect operations where they are needed.

Also highly related in this regard is the work on evidence passing [Xie et al. 2020; Xie and Leijen
2021], which provides the basis for the implementation of effect handlers in the Koka language.
The idea is to pass evidence vectors down to effect operations. These evidence vectors consist
of pairs of labels and handler implementations so that handlers can be looked up in place. In
contrast, evidence in Λcap is just a list of labels and the handler implementations are passed as
capabilities. Evidence passing is defined in the context of dynamically scoped handlers and hence
does not reflect the lexical nesting of handlers as regions and subregion evidence in Λcap do. Xie
et al. [2020] define an evidence passing translation from an algebraic effect calculus to an evidence
calculus, thus determining the evidence vectors statically. This translation is facilitated by the
effect system of the algebraic effect calculus based on rows of effect labels. In contrast, our source
calculus System Ξ does not feature a visible effect system and instead relies on second-class
capabilities. Xie and Leijen [2021] do not define a translation but achieve evidence passing by
defining appropriate evaluation rules for the algebraic effect calculus, hence their evidence vectors
are created dynamically. This allows them to lift the restriction of scoped resumptions, imposed
by Xie et al. [2020]. Both approaches support first-class functions. Moreover, both papers define a
translation to System Fv, a polymorphic lambda calculus with support for multi-prompt monads.
Instead, by building on Schuster et al. [2022b], we directly compile to System F in CPS.

5.2 Languages with Second-Class Values

Our lift inference consumes programs in System Ξ [Brachthäuser et al. 2020], a language with
second-class functions and capabilities. It is inspired by the work of Osvald et al. [2016] who
present _1/2 a lambda calculus that features both first-class and second-class functions, but no
control effects. Their work in turn builds on type-based escape analysis [Hannan 1998]. In _1/2,
second-class functions cannot be returned, nor closed over by first-class functions. In contrast,
System Ξ does not support first-class functions and in consequence our translation does not have
to handle them. We do not expect any complications in extending System Ξ and our translation
to first-class functions in the style of _1/2—that is, to first-class functions that cannot close over
second-class functions and capabilities. As they do not contain capabilities that need to satisfy
some subregion constraint, they can always run in the toplevel region, so we could just pretend
that one to be their definition-site region.
Brachthäuser et al. [2022] present System C as an extension of System Ξ to support a fine-

grained notion of second-class values. Their calculus introduces explicit box and unbox constructs,
inspired by modal logics. They also extend the type system to track which capabilities are used by
a statement or block. Boxing takes a second-class block and turns it into a first-class value, where
the type of the boxed block specifies the necessary capabilities (e.g., Int ⇒ Int at {yield}). To
call a boxed function it needs to be unboxed first. When unboxing, the type system ensures that
the necessary capabilities are still available, preventing functions from closing over capabilities
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and then leaving the scope of a handler. This system is more expressive than _1/2 and it is less clear
to us how to translate the sets of capabilities (e.g., {yield}) to the corresponding region. We leave
studying the translation of System C to Λcap to future work.

Xhebraj et al. [2022] present another variant of _1/2, called _
1/2
←↪

, which supports returning
second-class functions and is designed to be used for stack allocating memory. Safety is achieved
by modifying the runtime semantics: When a second-class value is returned, the returning frame
is simply not removed. While this is an elegant solution, our goal is to target standard runtime
systems like System F.

5.3 Languages with Regions and Subregioning

Our lift inference produces programs in Λcap [Schuster et al. 2022b] featuring explicit regions and
subregion evidence. We use a generalization which allows for non-scoped continuations. While we
follow Schuster et al. [2022b] and use regions and evidence to track the lexical nesting of handlers
on the stack, the original usage of regions is in memory management [Tofte and Talpin 1997]
and more generally resource management. Our notion of regions could in principle also be used
for resource management. A recent calculus in this regard which is close to Λcap is presented
by Schuster et al. [2022a]. They use regions and subregion evidence to deal with the management
of resources in the presence of exception handlers. In contrast to this work, they do not deal with
general effect handlers and do not consider inference of regions and evidence. The work of Schuster
et al. [2022a] is based on Kiselyov and Shan [2008], who also perform region inference. Their
approach, however, is very different from ours, as they encode regions using monad transformers
and hence rely on type inference to infer regions. Likewise, other algorithms [Tofte et al. 2001;
Tofte and Talpin 1997] for region inference in the context of memory management are different
from ours, often creating fresh regions for each variable and subsequently analysing which of them
can be unified. In contrast to this prior work, we infer regions by establishing a connection between
the lexical scoping of second-class values and regions.

It might be especially interesting to consider our CPS translation with a target language which
already has a notion of regions, like the ML Kit [Tofte et al. 2001], and potentially try to preserve
region annotations. We leave exploration of this to future work.

5.4 Dictionary Passing and Monad Polymorphism in Haskell

In Haskell it is typical to use stacks of monad transformers [Liang et al. 1995] and type classes to
compose different programs using different effects into one [Jones 1995]. When type classes are
implemented by dictionary passing, this is not unlike our passing of capabilities, but implicit. When
effect operations corresponding to a lower layer in the monad-transformer stack are used, they
have to be lifted through all layers above, just like in our work. Finding the correct composition
of lifts is automatic and works by type class resolution guided by the type of computations. In
contrast to this, we assume that capabilities are passed explicitly and find the correct composition
of evidence by a transformation guided by program terms. This has the advantage that different
instances of the same effect are easily disambiguated by passing different capabilities.
This problem was observed by Figueroa et al. [2015] and named effect interference. For them,

the interference between different instances of the same effect is also a security concern. As a
solution they propose the explicit passing of capabilities. However, their notion of capability is
different from ours in that they use them to ensure certain security guarantees on top of monad
transformers while we use them as an implementation technique for effect handlers. Consequently,
our capabilities contain the operation to execute when they are used while theirs do not.
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Schrijvers et al. [2019] compare and contrast monad transformers and the traditional implemen-
tation of dynamic effect handlers in terms of a free monad in Haskell. There, the problem of lift
inference manifests in a different way. Effectful programs are written against an open union of
signatures [Kiselyov and Ishii 2015]. The challenge is for a given effect operation to find the correct
injection into this open union. Again, Haskell type classes can be used for this to some extent.
However, using type class resolution to find the correct handler is problematic when there are

multiple instances of the same effect in the same program. As a solution, Devriese [2019] propose
explicit passing of type class dictionaries, which essentially are what we call capabilities. Moreover,
in order to nest handlers, they propose the explicit use of liftings, essentially what we call evidence.
They also present a case study that speaks for the feasibility of their explicit approach. We, however,
infer the correct use of evidence, so programmers do not have to do so explicitly. In their setting
liftings are general monad morphisms, while in our setting we specialize them to the continuation-
and state monads. Another difference is that they apply these liftings to capabilities, while we pass
evidence to the places where capabilities are used.

6 CONCLUSION

In this paper, we have presented a way to infer lifting information for lexical effects and handlers, by
giving a typed translation from a calculus System Ξwith second-class capabilities to a calculus Λcap

with explicit regions and subregion evidence. Our translation preserves typability and semantics. It
makes use of the second-class property to provide a clear connection for the definition-site and
each call-site of a function. This establishes a precise relation between reasoning based on the
second-class property and region-based regioning.

Moreover, we have evaluated the implications of lift inference practically, by implementing it as
a compiler phase for a source-level language. To this end, we have further implemented the CPS
translation for Λcap described by Schuster et al. [2022b], which makes heavy use of the information
provided by lift inference to enable efficient compilation of effect handlers. Our benchmarks indicate
that our approach is competitive with other state-of-the-art implementations of effect handlers and
often outperforms them.

While the second-class property of our source calculus is particularly helpful for lift inference, it
can sometimes be a restriction in programming. In the future, it would be interesting to investigate
whether it is possible to extend our approach to a language which has a controlled way of using
effectful first-class functions, as described, e.g., by Brachthäuser et al. [2022]. Furthermore, it would
be interesting to see how lift inference can be performed for languages with traditional effect
handlers. Also, while System Ξ uses types to enforce the second-class property for capabilities, we
believe that any mechanism to enforce this would do. But we leave a fully precise exploration of
this for future work.

7 DATA-AVAILABILITY STATEMENT

The benchmarks from Section 4 are available to be run in a Docker container in the accompanying
artifact [Müller et al. 2023a].
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