
Tracing Just-in-Time Compilation for Effects and Handlers

MARCIAL GAISSERT, University of Tübingen, Germany
CF BOLZ-TEREICK, Heinrich-Heine-Universität Düsseldorf, Germany
JONATHAN IMMANUEL BRACHTHÄUSER, University of Tübingen, Germany

Effect handlers are a programming language feature that has recently gained popularity. They allow for non-
local yet structured control flow and subsume features like generators, exceptions, asynchronicity, etc. However,
implementations of effect handlers currently often sacrifice features to enable efficient implementations. Meta-
tracing just-in-time (JIT) compilers promise to yield the performance of a compiler by implementing an
interpreter. They record execution in a trace, dynamically detect hot loops, and aggressively optimize those
using information available at runtime. They excel at optimizing dynamic control flow, which is exactly what
effect handlers introduce. We present the first evaluation of tracing JIT compilation specifically for effect
handlers. To this end, we developed RPython-based tracing JIT implementations for Eff, Effekt, and Koka
by compiling them to a common bytecode format. We evaluate the performance, discuss which classes of
effectful programs are optimized well and how our additional optimizations influence performance. We also
benchmark against a baseline of state-of-the-art mainstream language implementations.

CCS Concepts: • Software and its engineering→ Just-in-time compilers; Control structures.

Additional Key Words and Phrases: Effect Handlers, Tracing JIT

ACM Reference Format:
Marcial Gaißert, CF Bolz-Tereick, and Jonathan Immanuel Brachthäuser. 2025. Tracing Just-in-Time Compila-
tion for Effects and Handlers. Proc. ACM Program. Lang. 9, OOPSLA2, Article 307 (October 2025), 49 pages.
https://doi.org/10.1145/3763085

1 Introduction
In the last decade, a number of different programming language features have (re-)emerged that help
programmers to structure control flow. Examples include asynchronous programming, event-based
programming, generators, fibers, coroutines, and more. One such feature are effect handlers [Plotkin
and Pretnar 2009, 2013]. Effect handlers have been shown expressive enough to subsume the afore-
mentioned control-flow features [Bračevac et al. 2018; Dolan et al. 2017; Leijen 2016, 2017a; Plotkin
and Pretnar 2013]. They are also high-level enough to admit a simple typing discipline and en-
courage structured programming. By using effect signatures as interfaces, programmers separate
the use-site of effects (e.g., reading from the console) from its concrete implementations (e.g.,
performing I/O or reading inputs off a provided string). While their origin lies in programming
language theory, effect handlers are gaining interest both theoretically and practically. They are
implemented not only in a variety of research languages (such as Eff [Bauer and Pretnar 2015],
Koka [Leijen 2017b], Frank [Lindley et al. 2017], Effekt [Brachthäuser et al. 2020], Helium [Biernacki
et al. 2019], and more), but also practical general-purpose languages like OCaml 5 [Sivaramakr-
ishnan et al. 2021], Scala [Kagami 2023; Odersky 2023], Unison [Unison Computing 2025], and
WebAssembly [Phipps-Costin et al. 2023] began integrating effects and handlers.
Authors’ Contact Information: Marcial Gaißert, marcial.gaissert@uni-tuebingen.de, University of Tübingen, Germany;
CF Bolz-Tereick, cfbolz@gmx.de, Heinrich-Heine-Universität Düsseldorf, Germany; Jonathan Immanuel Brachthäuser,
jonathan.brachthaeuser@uni-tuebingen.de, University of Tübingen, Germany.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/10-ART307
https://doi.org/10.1145/3763085

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

https://orcid.org/0000-0003-0566-7632
https://orcid.org/0000-0003-4562-1356
https://orcid.org/0000-0001-9128-0391
https://doi.org/10.1145/3763085
https://orcid.org/0000-0003-0566-7632
https://orcid.org/0000-0003-4562-1356
https://orcid.org/0000-0001-9128-0391
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://doi.org/10.1145/3763085

307:2 Gaißert, Bolz-Tereick, and Brachthäuser

One way to view effect handlers is that they generalize exception handlers. However, they are not
to be used only in exceptional cases, but as a general way to structure non-local control flow, both
in the small (e.g., to break out of a loop) and in the large (e.g., to model the architecture of an entire
application). It is thus important to implement them efficiently to reduce the trade-off between
modularity and performance. This is an active area of research, with two kinds of approaches:
• ahead-of-time optimization using either
– rewrite rules [Karachalias et al. 2021b; Pretnar et al. 2017; Sieczkowski et al. 2023], or
– continuation-passing style [Müller et al. 2023; Schuster et al. 2020], and
• runtime systems [Alvarez-Picallo et al. 2024; Ma et al. 2024; Sivaramakrishnan et al. 2021].

While prior work on optimizing handlers already achieves good performance, it suffers from
typical problems with ahead-of-time compilation. Schuster et al. [2020] require that concrete effect
handlers and their nesting order are statically known. Müller et al. [2023] lift these restrictions, but
neither support first-class functions, polymorphic recursion, nor separate compilation. Karachalias
et al. [2021b] (and similarly Sieczkowski et al. [2023]) use rewrite rules based on explicit effect
coercions [Saleh et al. 2018]. Rewrites can also only be applied when handlers are known and their
applicability is thus restricted by separate compilation. Languages like OCaml 5 [Sivaramakrishnan
et al. 2021] and Lexa [Ma et al. 2024] offer specialized runtime systems for effect handlers. For
efficiency, it is common to restrict continuations to be one-shot, that is, resumed at most once
[Bruggeman et al. 1996; Dolan et al. 2015; Ma et al. 2024; Sivaramakrishnan et al. 2021]. A linear use
of continuations allows efficient stack-switching strategies but rules out other use cases of effect
handlers, e.g., backtracking search [Leijen 2016] or probabilistic programming [Nguyen et al. 2023].

Some of these limitations could be resolved by a just-in-time (JIT) compiler. Moving optimizations
to runtime, this naturally supports separate compilation. Optimizations that require involved static
analysis to be performed ahead-of-time (e.g., knowing the effect handler for a given effect operation),
or are unsound in the general case, could be implementedwithmore light-weight analysis at runtime.
At runtime, all information about effect handlers is available, and assumptions can be guarded. Yet,
no JIT compiler has been developed with the goal of optimizing effects and handlers.
While prior work on JIT compilation has shown that it is possible to optimize exceptions into

direct jumps [Paleczny et al. 2001; Würthinger et al. 2013], inline generators [Zhang et al. 2014], and
efficiently support undelimited continuations [Bauman et al. 2015a, 2017], there exists no work on
the more general construct of effect handlers. Here, we—to the best of our knowledge, for the first
time—explore the applicability of JIT compilation techniques for optimizing effect handlers. Since
the area of JIT compilation is large and developing a JIT compiler requires significant engineering
effort, we start with tracing JIT compilers [Bala et al. 2000; Bolz et al. 2009] by investigating their
effectiveness for effect handlers. In particular, we pose the following research questions:

• RQ 1: How does tracing JIT compilation compare with existing ahead-of-time optimizing
implementations of effect handlers?
• RQ 2: What are classes of effectful programs that tracing JIT compilation can optimize well?
What are the limitations of the approach?
• RQ 3: How can we optimize the performance of tracing JIT compilation for effect handlers?
• RQ 4: Are there differences in how well tracing JIT compilation performs for different
variations of effect handlers?
• RQ 5: Does JIT-compiling effect handlers impact the performance of programs that do not
use effects?

To find first answers to these questions, we implemented a bytecode interpreter in the RPython
framework [Bolz et al. 2009], which gives rise to a (meta-)tracing JIT compiler. We further modified

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:3

three existing research languages with effect handlers to target this bytecode format: Eff, the
first language with effect handlers, featuring dynamically scoped effect handlers [Plotkin and
Pretnar 2013], implemented by a dynamic search at runtime. Effekt, a language with lexically
scoped effects and handlers, based on a capability-passing transformation [Brachthäuser et al. 2020].
Koka, a language with both dynamically scoped effect handlers and named handlers, based on an
evidence-passing transformation [Leijen 2017b; Xie and Leijen 2021]. We believe these three to be
representative of a range of languages with effect handlers as they support different variations of
effect handlers and follow different approaches to implementing them. To study JIT compilation
for all three, and to minimize the bias of translating one paradigm to another, our bytecode format
directly supports the necessary features for both dynamic and lexical effect handlers. We evaluate
our implementation both qualitatively, identifying and describing representative examples, and
quantitatively, measuring the performance on benchmark programs.

Summary of our findings. Based on our implementation, our experience with it, and the re-
sults of our analysis, we can indeed confirm that tracing JIT compilation appears to be a viable
implementation technique for effect handlers.
• RQ 1 (Comparison with AOT) Common optimizations implemented by AOT optimizing
compilers for effect handlers (e.g., optimizing tail-resumptive handlers) emerge automatically
(Sections 2, 6.1 and 6.2). In a JIT, being able to speculate, these optimizations did not come
with a loss of expressivity of the source language (e.g., disallowing multi-shot resumptions
or separate compilation). Due to standard optimizations implemented by RPython, the ab-
straction overhead of effect handlers can be eliminated in many use cases. We can improve
performance further by applying specific optimizations (Section 4.1). Benchmark results com-
paring our implementation to AOT optimizing compilers show a competetive performance
both over most existing implementations of effect handlers and state-of-the-art language
implementations for programs with control effects (Section 6.1 and 6.5).
• RQ 2 (Advantages and Limitations) Effect handlers that use the continuation in a one-
shot and tail manner, or as exceptions, are optimized very well by the JIT (Section 6.2).
Those that are still one-shot, but resume in a non-tail position, are optimized well, but incur
costs for allocating the additional stack frames. Based on RPython, our implementation
inherits common limitations and problems of tracing JIT compilers, including performance
cliffs. Effect handlers, allowing complex control-flow patterns, further amplify some of these
problems. Handlers with complex patterns of resumes, or effect operations handled by many
different handlers, can potentially lead to a large number of bridges and traces, duplicated
continuations (tails) [Gal et al. 2009], and overly long traces (Section 6.2).
• RQ 3 (Optimizations) Standard optimizations for using the stack context to detect false
loops (Section 4.1.4) and specializing certain dynamically sized data structures (Section 4.1.3)
have a positive effect. Additional optimizations for prompt search (Section 4.1.2) and loop
start points (Section 4.1.1) have a minor effect and only help with specific benchmarks.
• RQ 4 (Variations of Effects) Most differences in the performance are minor in nature. The
adjustment of evidence vectors in Koka can lead to allocations when changing the handler
context. On the other hand, the tracking of handlers in evidence vectors in Koka can help to
avoid traversing deep stacks in some cases. The prompt search in Eff tends to generate more
guards, as it is harder for the JIT to reason about them (Section 6.4).
• RQ5 (Baseline) The implemented JIT is similar in performance to PyPy for our set of baseline
benchmarks, but is outperformed by some state-of-the-art JIT compilers (V8, LuaJIT) by a
factor of 2–3x. For control-effect-heavy benchmarks, though, we outperform state-of-the-art
language implementations like V8.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:4 Gaißert, Bolz-Tereick, and Brachthäuser

In summary, this paper makes the following contributions:
• The first implementation of a JIT compiler optimizing effects and handlers at runtime; it
supports three source languages with different variations of effect handlers (Section 4).
• A common bytecode format that directly supports dynamic and lexical effect handlers, as well
as a description of how to translate three different notions of effect handlers to the common
virtual machine (Section 3).
• An internal performance evaluation comparing the three variations of effect handlers in our
unified VM (Sections 5 and 6.4); this is the first time such a comparison is possible.
• An external performance evaluation, comparing against existing implementations of effect
handlers (Sections 5 and 6.1) and state-of-the-art language runtimes (Section 6.5).
• A description of implemented optimizations (Section 4.1) as well as an ablation study to
evaluate their effectiveness (Section 6.3).

The following section demonstrates our approach by example (Section 2), before we present
technical details (Sections 3 and 4), evaluate the effectiveness of tracing JIT compilation for effect
handlers (Section 5), and discuss our findings (Section 6).

2 JITting Effects by Example
This section aims to give a high-level overview of our approach. We provide a short example-driven
introduction to programming with effect handlers in Eff and then walk through the different steps
of evaluating the example in our tracing JIT implementation.

2.1 Example: Push Streams with Effects and Handlers
Our running example is push streams, adapted from Kiselyov et al. [2017], using the effect Emit.

effect Emit: int → unit

Similar to generators in Python, we can use the Emit effect to emit integer values, e.g. temperatures.
On the left, the function generateMeasurements implements a push-stream producer of integers.

let generateMeasurements n =

let rec loop t =

if t > 0

then

perform (Emit (measure t));

loop (t - 1)

else ()

in loop n

let filter p b =

handle

b ()

with

| effect (Emit x) k →
if p x then perform (Emit x) else ();

k ()

| _ → ()

The example on the right shows the definition of the standard combinator filter on push streams.
Here, the implementation of filter receives a function parameter b, which can use the Emit effect.
It handles the effect by checking the condition on the current value. If this succeeds, we then yield
the value; otherwise, we do not. In both cases, we resume at the original call site of Emit by calling
the continuation k. Being able to resume the computation by calling the continuation is the feature
that distinguishes effect handlers from (non-resumeable) exception handlers.

Function count on the left implements another push-stream consumer that counts yielded values.
Before resuming, we remember to perform the addition 1 + □ by pushing it onto the call stack.

let count b = handle b () with

| effect (Emit x) k → 1 + (k ())

| _ → 0

let countTooBig b =

count (fun () →
filter isValueTooBig (fun () → b ()))

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:5

filter

count

.
.
.

(a)

count

.
.
.

(b)

.
.
.

(c)

1 +□

.
.
.

(d)

count

1 +□

.
.
.

(e)

filter

count

1 +□

.
.
.

(f)

Fig. 1. Sketch of stack shapes during the execution of the loop. Some frames have been omitted. Prompts are
annotated as the name of the function installing them. Stacks grow upwards.

We can use the above combinators to construct a stream-processing pipeline (on the right). Function
countTooBig consumes a stream of integers by filtering values above a certain threshold and
counting them. It handles the Emit effect in its parameter b. Finally, we compose the producer and
consumer to compute the number of measurements that exceed the threshold.

countTooBig (fun () → generateMeasurements n)

2.2 Runtime Intuition
Operationally, effects and handlers manipulate the runtime call stack. Calling an effect operation
like Emit, captures the current continuation and binds it to k. Operationally, we unwind the call
stack up to the corresponding handler (i.e., the handle . . . with . . .). To support this search for
the correct handler, some language implementations push a marker on the normal call stack for
each handler. Instead, here we represent the call stack as a stack-of-stacks, which we refer to as the
metastack [Danvy and Filinski 1990; Dybvig et al. 2007; Schuster and Brachthäuser 2018].

Figure 1 illustrates the structure of the call stack for evaluating one iteration of our example:
countTooBig (fun () → generateMeasurements n)

Subfigure 1a represents the call stack before evaluating the call to the effect operation Emit in loop:
let rec loop t = . . . a○ perform (Emit (measure t)) . . .

At that point in the program execution, count and filter have both installed effect handlers,
which correspond to a separate stack segment each. Each stack segment is labeled with the function
that installed it. To evaluate the call to Emit, we check whether the current stack segment contains
a handler for Emit, remove that segment, and enter the handler installed by filter (Subfigure 1b).

let filter . . . = . . . if p x then b○ perform (Emit x) else () . . .

Here, we assume that we evaluated the conditional p x and now have to re-emit value x. This
unwinds the stack once more and transfers control to the handler installed by count (Subfigure 1c):

let count . . . = handler . . . | effect (Emit x) k → c○ 1 + (k ())

Before resuming, we push a frame to remember the addition of 1 (Subfigure 1d).
let count . . . = handler . . . | effect (Emit x) k → 1 + (d○ k ())

We then resume computation after the last call to Emit by pushing the captured stack segment
back to the metastack (Subfigure 1e).

let filter . . . = . . .; e○ k ()

Finally, we resume computation to the very first call to yield within loop (Subfigure 1f).
let rec loop t = . . . perform (Emit (measure t)); a○ loop (t - 1) . . .

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:6 Gaißert, Bolz-Tereick, and Brachthäuser

When we encounter an effect handler, we create a new empty stack and push it onto the metastack
before evaluating the handled statement. Each element of the metastack thus directly corresponds to
one effect handler. We call the number and order of these the stack shape. Capturing the continuation
amounts to repeatedly popping stack segments off the metastack until the correct handler is reached.
Resuming the continuation amounts to pushing stack segments back onto the metastack.

2.3 BC – Bytecode for Effect Handlers
As illustrated in the previous subsection, pushing and popping stacks occurs frequently when
evaluating a program that uses effect handlers. The cost of these operations has a significant impact
on the overhead of effect handlers. Before we describe how our JIT compiler performs optimizations,
we first sketch how the above code translates to our common bytecode BC. As we will see formally
in Section 3, BC features labeled blocks and jumps, manages local variables using explicit register
management instructions (for copying, swapping, and dropping/deleting), and explicitly manages
the metastack by pushing and popping individual frames as well as whole stack segments.

2.3.1 Example: Translation of loop. To get acquainted with the bytecode format and informally
relate effect handling with corresponding stack operations in bytecode, we now walk through the
running example translated to BC. We start by inspecting the simplified1 translation of loop:

loop(t, emit_tag):
gt ← primitive ">"(t, 0);
if gt then loopThen(gt, t) else
return (unit())

loopThen(gt, t):
push loopContMeasure(t);
jump measure(t)

loopContMeasure(ret, t):
emit_tag ← primitive getGlobal("Emit");
emit_h ← get dynamic emit_tag;
push loopContPerform(t);
emit_h.emit(ret)

loopContPerform(ret, t):
t ← primitive "-"(t, 1);
emit_tag ← primitive getGlobal("Emit");
jump loop(t, emit_tag)

The recursive function loop translates into four blocks. Block loop corresponds to the entrypoint
of the loop, while loopThen represents the then-branch of the conditional. Block loopContMeasure
is the continuation at the call to measure and loopContPerform is the continuation at the effect
operation Emit. Continuations receive the returned value as first argument followed by closure
arguments. In entrypoint loop, we check the loop condition and jump to loopThen if it is satisfied.
Here, we push the continuation loopContMeasure, with the current counter value t and then
call function measure, which we omit. Once we return from measure, we continue executing at
loopContMeasure, where we have two values available: ret, the measurement, and t, the loop
counter. Now, to perform an effect, we need to know which handler implementation to use. In
Eff, effect handlers are dynamically scoped, similar to how exceptions are dynamically scoped in
languages like JavaScript. That is, at runtime we perform a search for the closest handler for a given
effect. Our implementation assigns a globally unique prompt [Felleisen 1988] to each effect and
allocates the handler implementation on the stack, labeled with that prompt. To find the handler,
we first load the global prompt for Emit, and then retrieve the current dynamic binding for this
prompt using get dynamic. This entails searching the stack for the prompt and returning the value
stored there. We then invoke this handler implementation. Later, it will resume and we continue
the loop in loopContPerform, decrementing the counter and jumping back for another iteration.
1The actual code is more complicated due to curried function applications in Eff, which we don’t remove statically, and
semantics-preserving simplifications. Also, we summarized reordering of arguments before jumps to a jump-with-arguments.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:7

2.3.2 Example: Translation of filter. The handler that handled the effect in loop, was installed
by the function filter. Thus, calling it leads us into its implementation:

| effect (Emit x) k →
if p x then perform (Emit x) else ();

k ()

In the source code, we have access to the captured continuation as k. In our implementation, this
means that we need to unwind and capture the stack, then execute the actual code of the operation,
and restore the stack when calling k. This handler is translated as follows (again, simplified):

filterEmit(x, pred):
emit_tag ← primitive getGlobal("Emit");
k ← shift emit_tag;
push filterEmitContPred(x, k);
pred.apply(x)

filterEmitContPred(ret, x, k):
push filterEmitContIf(k);
if ret then filterEmitThn(ret, x) else
return(unit())

filterEmitThn(ret, x):
emit_tag ← primitive getGlobal("Emit");
emit_h ← get dynamic emit_tag;
emit_h.emit(x)

filterEmitContIf(ret, k):
r ← unit();
push stack k;
return (r);

The four blocks are: the entrypoint filterEmit, the continuation filterEmitContPred of the call
to p, the then-branch filterEmitThn, and filterEmitContIf corresponding to the continuation
□; k (). In the entrypoint, we first retrieve the prompt for Emit from the global variable. The next
instruction shift emit_tag unwinds and captures the part of the metastack up until and including
the stack labeled with the prompt (installed by filter prior to executing the body), and stores the
captured stacks in register k. The next instructions push the continuation on the stack and proceed
with calling the predicate, which is translated to a closure predwith a single operation apply. Upon
returning from the predicate, we continue with the conditional in filterEmitContPred. If the
predicate holds, we continue execution in filterEmitThn. This will invoke the currently installed
handler like we did in loop. Finally, we return to block filterEmitContIf, which reinstalls the
captured stack k and resumes execution after the call to Emit in loop by returning to it.

2.3.3 Example: Translation of count. Finally, the handler implementation in count translates to
the two blocks below. Block countEmit is the entrypoint, and countEmitCont corresponds to the
continuation 1 + □. As for every effect operation, we start by capturing the correct part of the
metastack using shift, push a frame for 1 + □, and finally resume using push stack and return.

countEmit(x):
emit_tag ← primitive getGlobal("Emit");
k ← shift emit_tag;
r ← unit();
push countEmitCont();
push stack k;
return (r)

countEmitCont(ret):
r ← primitive "+"(ret, 1);
return (r)

2.3.4 Summary. Translating our running example to bytecode illustrates how handling of effects
is split into two parts: selecting the correct handler implementation and capturing the correct
continuation. The former is achieved in Eff by storing the handler object on the stack, next to the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:8 Gaißert, Bolz-Tereick, and Brachthäuser

loop;loopThen;
loopContMeasure filterEmit

isValueTooBig

filterEmitContPred;
filterEmitContIf

loopContPerform

filterEmitContPred;
filterEmitThn

countEmitfilterEmitContPerformloopContPerform

> 39

1a, 1f 1b, 1e 1c, 1d

generated jump
guard failure
traced loop
traced bridge

1a reference to stack
shape in Figure 1

Fig. 2. Sketch of the traced loop and bridge. Nodes are bytecode blocks, sometimes combined, names refer to
the numbers in the translations above. Edges are traced control flow.

prompt, and looking it up dynamically. As we will later see, this is the part where the different
implementations differ the most. The latter is achieved by translating handlers to use shift
which captures the continuation up to and including a specific prompt. To resume, the captured
continuation is pushed back onto the metastack using instruction push stack ptr.

2.4 Tracing JIT for Effects and Handlers
Having gathered an operational intuition about effect handlers and their translation to our bytecode
format, we now describe how our tracing JIT compiler optimizes the execution of this program. In
particular, we demonstrate how it removes the indirection introduced by effects and handlers.

2.4.1 Tracing. Generally, a tracing JIT compiler starts in interpreted mode where it dispatches on
the bytecode instructions and interprets them one by one. At the same time, it maintains counters
for certain program positions and eventually reaches a threshold when evaluating a loop multiple
times [Bolz et al. 2009; Cuni 2010; The PyPy Project 2025]. In our example, it first does so within the
execution of the loop function, before the primitive operation >. When the threshold is reached, it
then records the instructions executed in the loop. Here, it does so for the case where the emitted
value does not exceed 39 ◦C. This is statistically likely, since this is more common in the test data.

2.4.2 Compiling. After the JIT compiler has traced the loop (bold in Figure 2), it will optimize
the resulting straight-line trace and generate native machine code, which will be run directly on
subsequent iterations. On each potential branch in the trace, a guard is emitted, checking that the
current iteration still corresponds to the traced control flow [Bolz et al. 2009; Cuni 2010]. The
effect call perform (Emit x) in loop corresponds to the optimized trace on the left in Figure 3.
Importantly, the annotations in < > should be read as comments; they do not have any runtime
semantics. We can notice that calling the effect operation and capturing the continuation do not
result in any generated machine instructions. The implementation is specialized to the specific
handler calling isValueTooBig, which in this example checks if the temperature value is smaller
than 39 ◦C. This is split into two guards here due to the implementation of generic comparison,
which could be changed to generate just one guard. To resume the continuation, we execute the
part of the trace on the right, which, again, merely continues with traced blocks. More notable is
what we do not see: allocations. Although our bytecode interpreter uses immutable linked lists for
stacks and metastacks, and thus would allocate on each push or resume, thanks to the allocation
removal performed by the JIT [Bolz et al. 2011], we do not allocate anything inside the hot loop!

2.4.3 Bridges. The loop will run as long as all guards still hold, i.e., as long as all values are smaller
than our limit of 39 ◦C. But eventually, while executing the traced loop, this guard may fail.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:9

tracedLoop1(p1,i1,p2):
. . .

< loopContMeasure, filterEmit >
< isValueTooBig >
i3 = int_eq(i2, 39)
guard_false(i3) ⇒ filterEmitContIf [i1]
i4 = int_lt(i2, 39)
guard_true(i4) ⇒ filterEmitThn [i1]
< filterEmitContPred >
. . .

. . .

< filterEmitContIf >
< loopContPerform >
i5 = int_sub(i1, 1)
< loop >
jump tracedLoop1(p1,i5,p2)

Fig. 3. Summary of traced and optimized loop code. Unrelated parts are marked with ... and blocks we go
through in < >. All other lines are generated machine code instructions.

tracedBridge1: // at filterEmitThn

. . . // guards checking stack shape and handler

< bridge end >

p6 = new Stack([[countEmitCont]], p7)

p5 = new MetaStack(p6, p3, p4)

. . .(p6,p5) // reify inner stack segment

jump prelude of tracedLoop1(. . .)

When this happens, we have to switch
back to an interpreted version again. In
fact, we will switch to the even slower
fallback interpreter that can retrieve all
the local data from the executing native
code [Bolz et al. 2009]. However, each time
this happens, another counter is incre-
mented and eventually, we start tracing
a bridge out of the guard, create a new, optimized, natively compiled program for this case, and
connect the existing loop to it [Cuni 2010]. This bridge is illustrated by the non-bold edges in
Figure 2. In the bridge, the effect call Emit x results in code similar to above, but with additional
guards and allocations at the end of the loop. Specifically, we can see one allocation for the new
stack frame pushed in sum and one for the changed stack segment in the metastack. While these
escape the loop and have to be allocated, there is no allocation necessary for the first stack segment
as it is kept separately [Hillerström et al. 2017] and did not change. We do, however, reify the inner
stack segment for the prelude of tracedLoop1, which starts inside the call to >. After that, we will
keep executing native code, even when our limit of 39 ◦C is exceeded. When we eventually exit the
program, an additional loop will be generated which executes all the 1 + □ frames we pushed.

2.5 Section Conclusion
In this section, we have introduced effect handlers and provided an intuition of their operational
semantics in terms of operations on the metastack. We then introduced our bytecode format BC by
example and showed how our tracing JIT implementation can remove almost all of the overhead
introduced by effect handlers. Instructions that remain fall into three categories: guards that are
required to check whether the trace is still valid, operations unrelated to the use of effect handlers,
and reifying operations at the boundaries between bridges, loops, and interpreted code. While all
examples so far have been in Eff, we also developed language implementations for Effekt and Koka.
The major difference between these languages is how we find the handler to execute for a given
effect operation. In Effekt, instead of binding handlers dynamically, handlers are directly passed as
capabilities. Every handler introduces and closes over a fresh prompt, which results in handlers
that are bound lexically [Biernacki et al. 2019; Brachthäuser et al. 2020; Zhang and Myers 2019]. In
Koka, we maintain a global evidence vector [Xie and Leijen 2021], which, for each effect currently
allowed, stores both the handler implementation and the associated prompt. This—in comparison

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:10 Gaißert, Bolz-Tereick, and Brachthäuser

Program syntax:

Program P ::= Ð⇀
Bi programs

Blocks B ::= { l(Ð⇀xi) : s } basic blocks
Statements s ::= · · · see Appendix A.1

normal control flow
| jump l jumps
| push l (Ð⇀xi); s pushing frames
| return (Ð⇀xi) returning

control operators
| xo ← new stack l(Ð⇀xi) @ xp; s creating stacks
| push stack x; s pushing stacks
| xo ← shift xp; s capturing stacks
| xo ← new stack l(Ð⇀xi) @ xp with xb; s create stack with dynamic binding
| xo ← get dynamic xp; s accessing dynamic bindings

VTables V ::= {ÐÐÐÐ⇀mi ↦→ li} virtual tables
Labels and tags l, t, m
Variables x
Values v ::= M continuations (see below)

| · · · see Appendix A.1
Stack syntax:
Stacks k ::= # empty stack

| l(Ð⇀vi) :: k stack frame
Metastacks M ::= ◦ empty metastack

| k @ v ↦→ v ::: M stack with prompt v

Fig. 4. Excerpt of the syntax of the bytecode format BC, relevant to express effect handlers.

with the Eff implementation—corresponds to simulating dynamic binding via mutability. The
optimized traces for both Effekt and Koka look similar to the ones for Eff, given input programs
ported to those languages, as we will see in Section 6.2, with differences described in Section 6.4.

3 The Bytecode Format BC
To implement a single tracing JIT compiler for our selection of source languages, we translate
them to a common bytecode format BC. In this section, we briefly present BC and hint at the
operational semantics of selected language constructs, not only to provide a mathematical intuition,
but because it very closely describes our implementation in RPython. The bytecode format was
designed to translate different forms of effect handlers in a way that is close to their standard
implementation, that is, it tries to be intentionally unsurprising for the most part. It is designed for
a register machine with an unbounded number of registers, where programs are split into blocks,
which start at the points we can jump or return to. The simplified syntax of BC is shown in Figure 4;
for the full description of BC and its abstract machine semantics, as well as further explanations,
we refer to Appendix A.1.

3.1 Delimited Control
To support control operators and to capture parts of the stack as the continuation, our stack is seg-
mented. As usual [Danvy and Filinski 1990; Dybvig et al. 2007], themetastack is a linked list of stacks,
which itself is a linked list of stack frames. The syntax of stacks and metastacks is formally defined
in Figure 4. MetastacksM are constructed using ::: and ◦, where every element is annotated with two

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:11

values: (1) a prompt that is used to select specific parts of the stack (resp. continuation) to capture, and
(2) the current dynamic value (explained in Section 3.2). Stacks k act like “normal” program stacks,
where # denotes the empty stack and :: pushes a frame, remembering label l and closureÐ⇀vi . e.g., the
stack from Figure 1e would be denoted as #@Emit ↦→ h ::: countEmitCont() :: ...@v0 ↦→ v1 ::: ◦.
The two-level structure allows us to directly iterate or move the stack segments between prompts,
without going over individual frames. As we will see in Section 4, this immutable nested structure
of linked lists also matches our implementation.

BC includes statements to express (multi-prompt) delimited control operators [Dybvig et al.
2007]. Roughly, we can translate the usual multi-prompt variant of reset0 and shift0 [Danvy and
Filinski 1989; Shan 2004] to our bytecode instructions as follows:

J reset0 (p) { term } K J shift0 (p) (xc) { term } K J resume xc (Ð⇀xi) K
= xp ← JpK; = xp ← JpK; = push stack JxcK;

xk ← new stack l() @ xp;∗ JxcK← shift xp; return (
ÐÐ⇀
JxiK)

push stack xk ; JtermK
J term K
*: where { l (Ð⇀xi) : return (Ð⇀xi) } ∈ P with l fresh and the xi appropriate for the return type

Here we see that reset, which delimits a computation, is decomposed into creating a fresh stack and
pushing that stack onto the current metastack. Similarly, resuming a continuation is decomposed
into pushing it and returning to it. Decomposing standard control operators into smaller instructions
simplifies their implementation and is more flexible in some cases. For instance, by not (immediately)
returning after push stack, we could support bidirectional handlers [Zhang et al. 2020].

We can use new stack to create new stack segments with a given first frame, shift to capture the
part of the stack up until including some prompt, and push stack to (re)install stack segments onto
the current stack. A more detailed explanation can be found in Appendix A.1.1.

3.2 Dynamic Binding
Effect handlers traditionally can be summarized as “dynamic binding plus delimited control”. So far,
we have only seen the aspect of BC that models delimited control. In general, dynamic binding can
be implemented in terms of delimited control [Kiselyov et al. 2006] – a technique commonly used to
describe the semantics of effect handlers [Forster et al. 2017; Hillerström et al. 2017; Kammar et al.
2013]. To avoid the indirection and the potential overhead of an encoding, here we refrain from
doing so and directly implement dynamic binding. Specifically, we support immutable dynamic
variables, which are conceptually allocated on the stack. Such a binding can be installed by using a
variant of new stack that also takes a value to be bound to the prompt, and can be looked up using
the special get dynamic instruction. Further details can be found in Appendix A.1.2.

3.3 Other Constructs
The calculus contains additional standard constructs, for creating objects and calling methods (with-
out inheritance), register management, conditional and unconditional jumps, stack management,
constructing data, and pattern matching, which are defined in Appendix A.1. This also includes a
formal definition of how we resolve labels l to blocks B in the obvious way.

3.4 Source Languages
Figure 5 gives a brief overview of how effect handlers in the three source languages are translated
to BC. In Eff, effect handlers are dynamically scoped like exception handlers in many languages.
To achieve this, we have a global prompt per effect and store the handler on the stack, next to the
prompt. In contrast, in Effekt, handlers are bound lexically and implemented by passing capabilities

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:12 Gaißert, Bolz-Tereick, and Brachthäuser

Eff Effekt Koka

Declaration global Ef ← [[fresh prompt]] global evv ← ref([])

Handler definition p ← [[fresh prompt]] p ← [[fresh prompt]]

and installation h ← new { op() ⇒ cap ← new { op() ⇒ h ← new { op(p) ⇒
k ← shift Ef k ← shift p k ← shift p

// handler body // handler body // handler body

} } }

w0 ← evv

ev ← Ev("Ef",p,h,evv)

evv ← [[copy evv]]

evv ← [[add ev to evv]]

s ← new stack @ Ef with h s ← new stack @ p s ← new stack @ p

push stack s push stack s push stack s

// . . . // . . . pass down cap // . . .

evv ← w0

Resuming push stack k

return x

Effect invocation h ← get dynamic Ef ev ← evv at [[static idx]]

h.op() cap.op() [[ev.h]].op([[ev.p]], ev)

Fig. 5. High-level overview over the different translations in BC-like pseudocode. Simplified. Partially re-
ordered within cells to highlight similarities.

that close over the prompt. Here, we generate a fresh prompt each time we install a handler. In
Koka, handlers are scoped dynamically but stored in a global evidence vector. Again, we generate a
fresh prompt for each handler, use it to delimit the continuation, and associate it with the handler in
the evidence vector, as described in Xie and Leijen [2021]. This also allows for masks/lifts [Biernacki
et al. 2017; Convent et al. 2020]. The translations are described in more detail in Appendix A.3.

4 Implementation
To implement the three languages using our JIT, we reuse the frontend of the respective language
implementation and add a backend that generates a common core representation (MCore), which
we then transform through various mostly-standard compiler phases, to finally emit the bytecode
format described here. The implemented phases on MCore are (in order): some light desugaring, an
ANF-like transformation (repeated later to re-establish the postcondition), dealiasing (also repeated
later), closure conversion, lambda lifting, and transformation of recursive bindings. After the (now
trivial) transformation to a simple assembly format, we then perform register allocation (without
spilling), number the resulting blocks, and remove some obviously unnecessary pushes introduced
by the translation. After this, we emit BC in a straightforward JSON encoding.

The JIT was implemented by writing a bytecode interpreter in RPython and using the RPython
toolkit to generate a tracing JIT from this. For simplicity of implementation, we do not actually
encode BC into a binary format, but represent it as a JSON file, which is parsed and loaded up-front.
The implementation of the interpreter closely follows the abstract machine semantics outlined
above. One of the key decisions in the implementation of our interpreter is that almost all runtime
structures, like the call stack, are immutable. For the stack, this means that it is a singly-linked
list with immutable frames and immutable list structure. While this might seem nonstandard for a
bytecode interpreter, it turns out to be a key enabler for JIT optimizations in the RPython toolkit.
This way, the JIT compiler can easily specialize on whole structures, while only checking the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:13

address of the roots of the relevant structures. In addition to the implementation of an interpreter,
the RPython framework requires annotations for code positions where multiple code paths might
merge, and in positions where we might start to trace a loop [Bolz et al. 2009]. As in previous
tracing JITs [Bala et al. 2000], we potentially enter the JIT at all syntactical backwards jumps in the
code, which ensures that all loops will eventually be traced. This is a relatively simple condition
that performs reasonably well. However, we further optimized places where the JIT compiler starts
tracing in two ways (Section 4.1.1 for additional JIT entrypoints and 4.1.4 for stack context).

4.1 Implemented Optimizations
While a naive implementation of the bytecode interpreter already performs quite well, we implement
multiple optimizations to improve its performance (evaluated in Section 5.3).

4.1.1 Additional JIT Entry Points. RPython requires us to mark positions in the implementation
where it can start tracing. Each loop should go through at least one of those points. An easy and
often used heuristic is to do this on every syntactical backwards transfer of control. For breaking
all loops, and thus all hot ones, it would be enough to just allow entering the JIT on those control
transfer operations. However, RPython will only virtualize allocations and dereferences within one
loop or bridge, but not across bridges. That is, objects that escape the loop need to be allocated
at the end of every iteration, hindering RPython’s allocation removal [Ardö et al. 2012; Bolz et al.
2011]. It is thus generally important to cut the loop before values are allocated and after they
are used. Specifically, to avoid allocations of stack frames, we additionally enter the JIT before
each push instruction. This way the frame allocated by push will be part of the trace and can be
virtualized. This is particularly important for sequences of push − return instructions: if we start
tracing inside of a non-tail function, we always have to re-push, and thus allocate, its return frame
in every iteration. If we start tracing before, we fully remove the allocation.

4.1.2 Fast-check for Prompt Equality by Code Position. Prompts are implemented as pointers, that
is, we use the memory allocator to generate fresh values. This is a simple implementation and
usually, RPython can reason about those allocations much better than, e.g., about a counter. When
generating prompts dynamically, however, there could be an unlimited number of different prompts
encountered for the same handler. When searching for a prompt on the stack, we compare each
installed prompt with the one we are searching for. When tracing this, we generate a specific
trace for the exact prompts we encountered during trace generation, thus specializing to the exact
sequence of prompts. This is overly specific, though. We note that, while there can be arbitrarily
many prompts at runtime, two prompts can only ever be equal if their definition site agrees. Thus,
to generate loops that are more general, we instead first check the definition sites of the prompts
when tracing and compare these in a respective guard. The trace generated then is still valid as
long as the definition sites of skipped prompts are the same, which limits the number of possible
values statically. On the flip side, this generates slightly more operations in the trace.

4.1.3 Specializing Data, Object, and Stack Frames. Closures, stack frames, data values, and objects
must internally store an environment. Since RPython does not support data types of dynamic size,
and the sizes of these environments are unknown when compiling the JIT interpreter, environments
are represented using arrays in RPython. This leads to the allocation of an array for the field values,
which is inefficient for common cases like cons cells in lists. To address this, we apply a standard
technique and generate specialized variants for common cases [Bauman et al. 2015a], specifically
for: (a) stack frames with up to 13 fields, (b) data with up to 6 fields, and (c) objects with up to
11 fields. In these specialized variants, all fields are stored directly in the object, eliminating the
indirection through an array. To avoid dynamic dispatch when accessing fields in these specialized

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:14 Gaißert, Bolz-Tereick, and Brachthäuser

versions, we inform the JIT of the correct specialization using information from the program code.
At each use site, we can determine which specialized version to use by storing the frame type
indexed by the return program counter (for stacks), storing environment sizes in the virtual table
(for objects), or computing the variant based on the match clause (for data).

4.1.4 Stack Context for False Loop Detection. RPython would usually detect a loop whenever it
reaches the same (smaller) program counter value, that is, the same bytecode instruction, again. If
we now, e.g., call a library function twice in a row, we will potentially trace a false loop that will
never execute more than one iteration. This problem is well known for tracing JITs, and can be
alleviated by considering (some part of) the calling context [Hayashizaki et al. 2011]. Thus, we also
consider the target of the topmost stack frame when determining the program location. Taking one
frame into account seems to be a good trade-off for the programs we evaluated this on, but this is
configurable in the implementation, and other choices are better for some of the benchmarks.

4.1.5 Separate Compilation. We support separate compilation and dynamic code loading. To do
so, we relocate newly loaded blocks into the existing list of program blocks and update internal
references during loading. Since this changes the list of program blocks, the program is no longer
constant in principle. However, we make sure that the JIT will speculatively treat the list of program
blocks as immutable and constant. To maintain correctness, this means all generated traces need
to be invalidated when loading new code. This optimization means we can optimize separately-
compiled code just as well as other code. In fact, all benchmarks in Koka are compiled separately
by module, including standard library functions to implement handlers. Also, for Eff, we compile
the benchmark code separately from the wrapper code that parses the input and prints the result.
However, it also leads to a quite significant startup time for Koka, which starts off loading a big
standard library and running all static initializers. This could be improved using standard techniques
like lazy-loading, or a more optimized loading mechanism, but this is out-of-scope for this paper.

4.2 Limitations
There are a few noteworthy restrictions of our current implementation for the different languages.
First, our implementation of Eff does not fully support finally-clauses, although the bytecode could.
Additionally, the programming language Koka features a few additional concepts that we currently
do not (reliably) support to keep the implementation effort manageable. Some of these concepts
are related to effect handlers, such as shallow resumptions and special mask operations [Convent
et al. 2020]. We conjecture that these additional features could be implemented without changes to
the bytecode format. Koka also supports additional features, unrelated to effect handlers, such as
special operations for optimizing tail-recursion modulo context [Leijen and Lorenzen 2023]. Again,
these features were not needed for the benchmarks, and we do not support them at the moment.

5 Performance Evaluation
To evaluate the effectiveness of tracing JIT compilation for effect handlers, we first will evaluate the
performance against other implementations of the same languages, and among our implementations.
Then, we will benchmark against a selection of state-of-the-art language implementations, and
finally conduct an ablation study to evaluate the influence of our optimizations.

5.1 Benchmark Descriptions
Most of the control-effect benchmarks are from a community-maintained benchmark suite [Hiller-
ström et al. 2023], also described in Appendix A.2. However, to better explore certain aspects of the
implementations, we added a few additional benchmarks: (1) unused-handlers is a variation of the
countdown benchmark from the community benchmark suite, designed to explore the case where

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:15

the handler is separated from the call site by multiple (unused) handlers. To achieve this, we insert
multiple (unused) handlers for a yield effect between the inner loop and the state handler. This is
similar in intent and structure to a benchmark used by Kiselyov and Ishii [2015]. (2) to-outermost-
handler is very similar to unused_handlers, but makes it so the unused handlers that separate
the call site from the handler are also for the same state effect, and defined at the same program
position. This is meant to potentially confuse heuristics based on handler type and definition site.
We were unable to implement this benchmark in Eff, since it requires a way to skip handlers. In
Koka, we use masking to achieve this, while in Effekt, we add a higher-order function with an
appropriate type (not mentioning the effect). (3) multiple-handlers is designed to simulate the
case where one occurrence of an effect operation is handled by different handlers at different points
in the program execution. It defines a generator function which emits/yields values using an effect.
This is subsequently handled by three different handlers in three different calls, that compute the
square sum, the sum, and the number of emitted values, respectively. (4) counter (koka only) is a
variant of countdown where the effect operation is explicitly annotated as linear (fun instead of
ctl, also see Brachthäuser and Leijen [2019]). It was taken from the standard set of benchmarks
provided with the Koka language implementation. (5) startup is a benchmark implementing a
constant 0 function and is meant to evaluate startup times for the different implementations.

Finally, for evaluating direct-style performance, we used a subset of the benchmarks from [Marr
et al. 2016], excluding the macro benchmarks, also described in Appendix A.2. For our backends,
we only implemented those in Effekt. In contrast to the benchmarks provided there, we do not use
the harness but a simple wrapper to run complete runs with a given number of iterations. In this
way, the methodology can be the same as for the other benchmark results reported in this paper.
Apart from minor changes to support this (e.g. exports), the benchmarks remain unchanged.

5.2 Benchmarking Methodology
The benchmarks were run using hyperfine version 1.19.0 [Peter 2024] on NixOS 25.05 (Linux
6.12.16) with a x86_64 Intel i7-8550U CPU. For both our modified implementations and the other
cases we used Eff version 5.1 (at 130709b9), Effekt v0.19.0 (at acb9c982), and Koka version 3.1.2
(at 3b2083d4). For the external benchmarks, we used Ocaml 5.2.1, Python 3.12.9 and PyPy 7.3.17
(for Python 3.10.14), Lua 5.2.4 and LuaJIT 2.1.1713773202, and Node 22.14.0 (with V8 12.4.254.21).
The benchmarks were also run on M1, for which the results can be found in Appendix A.7.

All benchmarks were first run once to check their output, as well as potential errors. This also
sorted out benchmarks that run for more than 90 seconds, which are reported as >90s based on
this. The other timings are of full program runs, which includes the time for loading the bytecode,
as well as tracing and code generation in the JIT, but not the time to compile them to bytecode.
Each was run for at least 20 runs or 6 seconds2. The reported numbers are the arithmetic mean
over those runs. Before each set of runs, one warmup run was executed to fill potential disk caches.
As a summary number, we also report the geometric mean slowdown compared to the JIT

implementation. This “geomean slowdown” reported in the results is the geometric mean of the
slowdown for the cases where both the implementation in question and the base implementation
ran successfully, not including those that timed out. The base implementation is the respective JIT
implementation for comparisons within a language and the Effekt JIT implementation otherwise.

5.3 Benchmark Results
5.3.1 Internal performance evaluation. Figure 6 shows the timings of different backends for the
three languages on the control-effect benchmarks. Here, the geometric mean slowdowns are

2This includes some of the overhead of benchmarking, so the resulting times add up to slightly less.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:16 Gaißert, Bolz-Tereick, and Brachthäuser

Eff Effekt Koka
JIT Ocaml Ocaml* JIT LLVM JS ML JIT C JS

countdown 0.695 13.156 0.110 0.257 1.322 1.759 0.105 0.351 12.904 2.001
counter — — — — — — — 0.417 8.248 1.304
fibonacci-recursive 10.324 62.564 1.548 8.399 2.779 33.609 2.090 4.688 13.627 8.397
generator 0.504 3.772 3.078 0.754 6.368 8.856 ✗ 0.756 > 90.000 30.176
handler-sieve 5.301 39.965 14.196 4.696 1.813 3.427 ✗ 5.119 9.948 ≡
iterator 0.150 4.694 1.401 0.022 0.325 0.456 0.148 0.275 1.880 0.939
multiple-handlers 0.963 16.593 — 0.891 1.511 1.436 1.807 1.122 48.402 5.508
nqueens 0.900 ✗ 0.432 1.465 1.224 2.445 0.164 0.934 30.148 3.970
parsing-dollars 0.532 27.038 1.607 0.520 4.469 1.169 0.289 0.771 22.949 12.624
product-early 0.818 7.833 1.049 0.516 0.537 2.094 0.465 0.776 33.661 3.985
resume-nontail 0.206 2.092 0.213 0.180 0.175 OOM 0.174 0.429 31.017 ≡
startup 0.005 0.002 0.002 0.005 0.002 0.034 0.002 0.239 0.002 0.064
to-outermost-handler — — — 2.375 1.361 1.772 ✗ 0.777 17.633 3.332
tree-explore 0.551 1.808 0.286 0.378 0.621 2.143 0.469 0.662 3.305 1.210
triples 0.315 0.857 0.159 0.163 0.288 1.913 0.075 0.755 44.092 5.161
unused-handlers 4.875 > 90.000 — 1.544 1.317 1.792 ✗ 0.353 12.743 1.970
geomean slowdown 1.000 7.830 0.962 1.000 1.508 3.507 0.696 1.000 11.322 4.242

Fig. 6. Runtimes of the benchmarks. Time in seconds. Fastest in bold. ≡ marks stack overflows, — unimple-
mented benchmarks and ✗ failing compilations. Geometric mean slowdown is relative to JIT.

w.r.t. the JIT implementation of the same language. We compare against the plain-ocaml backend
of Eff (“Ocaml”), as well as the version at oopsla-2021Artifact, which should agree with the
artifact [Karachalias et al. 2021a] (“Ocaml*”), the LLVM-based (“LLVM”) and JavaScript (“JS”)
backends of Effekt, the discontinued [Brachthäuser 2024] ML backend of Effekt (“ML”), and the
C (“C”) and JavaScript (“JS”) backends of Koka. For Eff, the JIT implementation is faster than
the plain-ocaml backend using the same Eff version in all but startup. The Eff plain-ocaml
backend from the OOPSLA artifact [Karachalias et al. 2021a] is similar overall, being faster than
the JIT for countdown, fibonacci-recursive, nqueens, tree-explore and triples, and slower
in the others. The relative standard deviation was less than 3% for all benchmarks on Eff. Note
that the nqueens benchmark for the newer Eff is not shown since the code generated by Eff
resulted in a type error, which we were unable to fix. Neither could we run our added benchmarks
multiple-handlers and unused-handlers on the old version, due to an assertion failure in the Eff
compiler. For Effekt, the ML backend is fastest overall by a factor of almost 2x, and fastest in all but
the Benchmarks that aren’t supported by it and iterator,multiple-handlers and tree-explore. In
all of those three benchmarks and generator, JIT is the fastest implementation. In handler-sieve,
to-outermost-handler and unused-handlers, the LLVM backend is faster than the JIT. The
ML backend does not support handler_sieve, to_outermost_handler, and unused_handlers.
The relative standard deviation was less than 3% for all benchmarks on Effekt except generator
for LLVM and JavaScript (4% resp. 3.6%), nqueens for JavaScript (4.5%) and parsing-dollars for
LLVM (4%). For Koka, the JIT backend is fastest in all benchmarks, but has a high startup time. In
the results measured on M1 (see Figure 20 in the appendix), though, the C backend outperforms the
JIT for fibonacci-recursive. The JavaScript backend also often outperforms the Koka C backend
on those benchmarks. The relative standard deviation was less than 4% for all benchmarks on
Koka except for multiple-handlers (4.5%), nqueens (5.9%) and parsing-dollars (4.6%) on JS and
parsing-dollars for JIT (6.3%).

5.3.2 External performance evaluation. Figure 7a shows the results for the subset of the bench-
marks from Marr et al. [2016] for direct-style code. Here, we compare against the subset of other

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:17

(a) direct style Effekt JS Lua Python
JIT V8 LuaJIT Lua CPython PyPy

bounce 0.816 0.412 0.898 14.286 13.256 0.410
list-tail 0.570 0.545 1.209 9.100 8.356 2.335
mandelbrot 0.184 0.087 0.051 0.488 1.192 0.154
nbody 0.203 0.071 0.057 1.598 1.787 0.198
permute 2.464 0.752 0.862 20.946 24.204 2.160
queens 4.021 0.675 0.950 12.261 11.730 1.266
sieve 1.119 0.460 0.455 5.154 11.077 0.647
storage 0.710 0.325 1.779 5.544 5.865 0.929
towers 1.821 1.370 1.883 33.920 27.371 4.481
geomean slowdown 1.000 0.437 0.632 7.755 9.215 0.984

(b) control effects Eff Effekt Koka JS OCaml 5 Python
JIT JIT JIT V8 OCaml 5 CPython PyPy

countdown 0.695 0.257 0.351 11.188 5.829 > 90.000 10.463
fibonacci-recursive 10.324 8.399 4.688 4.002 1.473 54.703 10.694
generator 0.504 0.754 0.756 28.535 1.203 41.976 13.544
handler-sieve 5.301 4.696 5.119 ≡ 9.894 ≡ > 90.000
iterator 0.150 0.022 0.275 1.274 0.621 3.451 0.297
multiple-handlers 0.963 0.891 1.122 8.443 — 21.479 1.756
parsing-dollars 0.532 0.520 0.771 11.064 4.322 > 90.000 2.648
product-early 0.818 0.516 0.776 11.530 0.238 ≡ 5.413
resume-nontail 0.206 0.180 0.429 — 0.464 — —
startup 0.005 0.005 0.239 0.031 0.002 0.020 0.090
geomean slowdown 1.419 1.000 2.233 13.611 2.213 21.846 8.269

Fig. 7. Runtimes of external benchmarks. Time in seconds. Lower is better, fastest in bold. ≡ marks stack
overflows and — unimplemented benchmarks. Geometric mean slowdown is relative to Effekt JIT.

languages, for which implementations of the benchmarks existed already, i.e. the V8 JavaScript
implementation [Google 2025; OpenJS Foundation 2025], the CPython and PyPy implementations
of Python [Bolz et al. 2009; Python Software Foundation 2025], and the LuaJIT and default imple-
mentations of Lua [Ierusalimschy et al. 2024; Pall 2025]. The geometric mean slowdown is w.r.t.
Effekt JIT. Overall, V8 is the fastest measured implementation, faster than our JIT by a factor 2.3x. In
each benchmark, either V8 or LuaJIT are faster than our JIT backend. Our JIT is faster than PyPy in
list-tail, storage and towers, and slower by a larger factor in bounce, queens and sieve. For the
other benchmarks, the differences between our JIT and PyPy are below 20%. The relative standard
deviation for these benchmarks is below 4% except for towers on Effekt (6.5%) and queens (7.2%)
and permute for LuaJIT. permute had a large relative standard deviation of 112% for LuaJIT.

Figure 7b shows the benchmarking results for our implementations compared with other imple-
mentations of the control-effect benchmarks. We include Ocaml 5 [Sivaramakrishnan et al. 2021],
for which the benchmarks were implemented in the benchmark suite already. To further anchor
our results to existing state-of-the-art language implementations, we implemented a subset of
the community benchmark suite using existing language features like generators and exceptions,
where possible in JavaScript and Python. The JavaScript and Python versions were constructed by
translating the benchmarks from the community benchmark suite that only use effect handlers
in the exception-like (i.e. zero-shot) or generator-like (i.e. one-shot and tail) form. To do this, we
used the standard encoding (similar to [Alvarez-Picallo et al. 2024]), using message objects to
distinguish multiple effect operations and re-yielding where appropriate. Deviating from this, we
manually removed obvious overhead by not using message objects if there is only one generator-like

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:18 Gaißert, Bolz-Tereick, and Brachthäuser

JIT no 4.1.1 no 4.1.2 no 4.1.3 no 4.1.4 more 4.1.4 none
Eff 1.000 0.930 1.000 1.111 1.610 0.991 1.967
Effekt 1.000 0.899 1.004 1.000 1.497 0.871 2.076
Koka 1.000 0.999 0.994 1.125 2.114 1.094 2.366

Fig. 8. Geomean slowdowns of the benchmarks on jit with different optimizations disabled or changed.
Summarized from timings per benchmark in Figure 19 in the appendix.

effect reaching a certain handler, translating tail-recursive functions to loops, and using standard
constructs (as for . . . of . . . in JavaScript) where their semantics matches exactly.
In the geometric mean, the Effekt JIT is fastest, followed by the JIT for Eff and Koka as well

as Ocaml5, which is similar to the JIT for Koka. The others are slower by a significant amount.
This is also visible in the individual benchmarks. Ocaml5 is fastest in fibonacci-recursive (which
does not use handlers) and product-early. For all other effect-handler benchmarks (not counting
startup), one of the JIT backends is fastest, in all cases but generator, the Effekt one. For the
additional values not in Figure 6, the relative standard deviations are below 4%.

5.4 Influence of Optimizations
Finally, Figure 8 shows the geometric means over the slowdowns on the control-effect benchmarks
when disabling certain (or all) optimizations in the JIT. The individual data for the benchmarks can
be found in the appendix in Figure 19. The biggest slowdown can be seen for disabling contexts
for false loop detection (Section 4.1.4), while disabling additional JIT entry points (Section 4.1.1)
makes the benchmarks faster in the geometric mean, and comparing labels by definition site first
(Section 4.1.2) does not show a significant effect overall. For specialization (Section 4.1.3), or using
more context (Section 4.1.4), the influence seems to depend on the source language.

6 Discussion
Given our empirical results from Section 5, we will now discuss our answers to the research
questions posed in the introduction.

6.1 Comparison with AOT (RQ 1)
How does tracing JIT compilation compare with existing ahead-of-time optimizing imple-
mentations of effect handlers?

To answer this question, we will first look into how the JIT compares to the other backends for
each of the languages in turn.

6.1.1 Eff. The JIT backend is faster than the Eff implementation at the same version using the
plain-ocaml backend in all benchmarks. The Eff version from the artifact by Karachalias et al.
[2021b] is significantly faster than the Eff version we based our modifications on. This is because of
changes in the translation3. For countdown and fibonacci-recursive, the Eff JIT implementation
is also significantly slower than the other JIT implementations, which is discussed in Section 6.4.
For the other benchmarks (except startup), the faster Eff implementation is faster by at most a
factor of 2.1x. Overall, the JIT is comparable in performance to the faster plain-ocaml backend.

6.1.2 Effekt. The JIT is faster than all other evaluated Effekt implementations in 4 cases, but is
outperformed by the MLton backend for most benchmarks. However, it is worth noting that the
whole-program optimizing MLton backend relies on fully monomorphizing stack shapes [Müller

3See https://github.com/matijapretnar/eff/issues/86#issuecomment-1493388587 for more details.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

https://github.com/matijapretnar/eff/issues/86#issuecomment-1493388587

Tracing Just-in-Time Compilation for Effects and Handlers 307:19

et al. 2023] and thus fundamentally cannot support the whole Effekt language, which is why
there are no values reported for generator, handler_sieve, to_outermost_handler, and un-
used_handlers. It is also why this implementation was discontinued [Brachthäuser 2024]. If we
exclude the MLton backend from the comparison, the JIT backend is fastest in more than half of the
benchmarks. It also is always within a factor of 3.03x of the LLVM backend, while outperforming it
by an order of magnitude in some cases. Overall, the JIT is outperformed by the more restrictive
MLton backend, but is slightly more performant than the LLVM backend.

6.1.3 Koka. The JIT is faster than the otherKoka implementations for all control-effect benchmarks
except startup. Note, however, that, on x86 the C backend was significantly slower for us than
on M1 (Figure 20 in the appendix). There, it is faster on fibonacci-recursive, which does not use
effect handlers. Thus, for effect-handlers, the JIT clearly outperforms both Koka backends.

6.1.4 Conclusion. In summary, the tracing JIT implementation compares competitively with
existing AOT implementations of effect handlers. Implementations that restrict programs to a
subset of possible effect handler usages, or few with extensive optimizations, can outperform our
current implementation significantly in some cases, but most are significantly slower. As we will see
in Section 6.2, many standard optimizations for effect handlers emerge automatically. Tracing JIT
compilation thus seems a good fit for implementing languages with effect handlers when focusing
on the performance of control-effect-heavy code.

6.2 Advantages and Limitations (RQ 2)
What are classes of effectful programs that tracing JIT compilation can optimize well?
What are the limitations of the approach?

To answer this question, we will first split the benchmarks by their usage of effect handlers, more
precisely by the way the captured continuation is used:
(1) It may not be used at all (zero-shot), as is the case in product_early. This case also occurs in

nqueens, parsing-dollars and triples, which also include some of the other uses.
(2) It may be called once in tail postion (one-shot and tail) as in countdown, handler-sieve,

iterator,multiple-handlers, and parsing-dollars.
(3) It may be called once in non-tail position (one-shot, non-tail) as in resume-nontail.
(4) Finally, it may be called multiple times (multi-shot), as is the case for nqueens, tree-explore

and triples.
The other part of the implementation of effect handlers, the dynamic dispatch, can be optimized
out in all cases. For a detailed explanation of why this is the case, we refer to Appendix A.5.

6.2.1 Case 1: zero-shot. In the zero-shot case, nqueens, parsing-dollars and triples are unlikely
to be dominated by the performance of the zero-shot continuation. For product-early, the JIT is
slightly faster than the general AOT implementations, and outperformed slightly by more optimized
ones like the ML implementation.
Inspecting the traces for product-early, we find that the generated loop iterates over the list,

checking that the value is not 0, and pushes stack frames according to the values. This part is
unrelated to the effect handler and continuation capture. Additionally, some entry bridges and
bridges are generated, one of which is for the case where the number is 0, in each of the backends.
In all three backends, this bridge inserts guards for the current stack and removes the topmost
stack segment, without copying it. Sadly, due to the position where the loop is split, it allocates
stack frames for the next benchmark iteration.
In general, as described in more detail in Appendix A.4.1, if the captured continuation is not

called and thus does not escape the trace, the continuation capture is optimized out in the JIT trace.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:20 Gaißert, Bolz-Tereick, and Brachthäuser

6.2.2 Case 2: one-shot and tail. In iterator, the JIT outperforms all other implementations signifi-
cantly. For all backends, the JIT traces one loop, that can be optimized to just a simple counting
loop for Effekt and Koka, while for Eff, some checks for the stack-shape stay in the optimized loop
(cf. Section 6.4). The benchmarking result for Koka is dominated by startup time (cmp. startup). In
countdown, JIT can also outperform most language implementations, except for the better Eff
plain-ocaml backend and the EffektML backend, as well as the direct Ocaml 5 implementation.
In Koka however, annotating the one-shot and tail nature helps the performance of the non-JIT
implementations (counter is the annotated version). In parsing-dollars, the only implementa-
tion faster than the JIT implementations is the Effekt ML implementation. In all three JIT base
implementations, one optimized loop is generated—that does not contain any operations leftover
from the implementation of effect handlers—, accompanied by some bridges and entry bridges.
In handler-sieve, the stack shape is highly dynamic, which is why it cannot be evaluated with
the MLton backend for Effekt. The LLVM backend is faster than the JIT here, by a factor of 2.6x.
For the other languages, the JIT outperforms all other implementations, with the Koka JavaScript
backend leading to a stack overflow. The JIT traces three loops in all backends, which are a loop
entering the handler and re-throwing, one resuming back through all handlers, and one returning
out through all handlers at the end. Thus, resuming is split from capturing the continuation and
some allocations for the handler do occur, which hurts JIT performance.
In general, again, no additional overhead for the continuation capture occurs when the contin-

uation is resumed just once in tail position and this resumption is within the same trace. This is
described in more detail in Appendix A.4.2.

6.2.3 Case 3: one-shot, nontail. The benchmark resume-nontail was specially constructed for
this case. Performance of the JIT is very close to the faster Eff plain-ocaml backend and the Effekt
ML and LLVM backends respectively, where the ML backend is the fastest implementation. For
Koka, it outperforms the C backend, while the JavaScript backend stack overflows. In all three
backends, three loops are generated for this benchmark, where one of those traces through the
handler call, and the inner loop, and contains allocations for the additional stack frame. The second
loop traces through the returns through the new stack. Finally, in all three backends one of those
loops is duplicated with a different split point and context.

Again, this case is such that, at least conceptually, we need to “insert” some new stack frame(s)
above the prompt on the stack. This means that due to our linked stack representation, without
any knowledge about those frames, we will have to allocate at least those new frames. Since every
stack is delimited by a prompt and resuming always reinstalls the delimiter, we never have to
(re-)allocate the individual stack frames in the prefix or suffix, but only the additional frames [Ploeg
and Kiselyov 2014], and the outer-level linked list of the captured continuation. We have seen an
example for this case in Section 2.

6.2.4 Case 4: multi-shot. The prototypical example for this case is backtracking search or non-
determinism. Here, the results are mixed. Note that some implementations do not support this
usage of effect handlers to implement other cases efficiently [Sivaramakrishnan et al. 2021] or only
support it under special circumstances [Ma et al. 2024].
The JIT is outperformed by a significant margin for nqueens by the better Eff plain-ocaml

backend, and the EffektML and LLVM backends. For tree-explore, it is outperformed by the old
Eff plain-ocaml backend but can outperform even the Effekt MLton backend. For triples, it is
just about a factor of 2x from the old Eff plain-ocaml backend and the Effekt MLton backend. In
summary, it can get reasonable performance in those cases, but it can also be significantly slower,
in not-easily-predictable ways.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:21

Resuming the continuation multiple times, the JIT compiler will in general generate multiple
loops as well as potential bridges for alternative paths. As an example, the triples benchmark
from the community benchmark suite [Hillerström et al. 2023] generates—depending on the source
language—between 10 and 13 loops as well as between 17 and 30 bridges. Here, we can start to
see a downside of tracing JIT compilation: Because we always inline the whole continuation, we
duplicate it for all variants of a loop for different control flow paths. Especially for multi-shot
handlers, which naturally have a complex control flow, this will lead to duplicated copies of parts
of the code. While this tail duplication [Gal et al. 2009] potentially allows more specialized and thus
efficient traces, it also means the JIT compiler spends more time compiling and uses more memory.

6.2.5 Capturing Large Continuations. The way our JIT optimizes stack capturing means that it
effectively specializes to the stack shape of the captured continuation. Because of this, in the case
where this shape becomes large enough, our implementation will run into the following issue:
During tracing, when walking the metastack, each inspected stack segment contributes to the
length of the unoptimized trace. Eventually, we reach an internal limit of RPython. In this case, no
optimized loop will be generated, which results in a significant performance cliff. This case did not
occur in the benchmarks, though. The issue stems from our decision to always specialize the code
to the specific metastack shape, by unrolling the loop that captures the continuation. It would be
possible not to specialize, e.g. based on some heuristic, at the cost of generating less efficient code
in those cases.

6.2.6 Conclusion. In summary, if the captured continuation is used at most once, and within the
same loop, the JIT can remove the stack operations, with minor overhead to extend and rebuild the
stack structure if doing so in a non-tail manner. It sometimes struggles with multiple resumptions,
where performance can degrade in some cases, amplifying the general problem of tail duplication
for tracing JITs. Also, very large contiuations can be a problem (not further explored here).

6.3 Optimizations (RQ 3)
How can we optimize the performance of tracing JIT compilation for effect handlers?

Overall, the optimizations improve benchmarks by about a factor of 2x in the geometric mean,
although this varies widely by benchmark and language implementations. While the optimizations
improve the runtime by more than an order of magnitude for some benchmarks, like iterator for
Eff and Effekt, for others there is almost no effect, e.g. countdown for Effekt. Overall, even this
simplest implementation provides a reasonable performance in many cases.

6.3.1 Stack context for false loop detection (Section 4.1.4). When looking at the data from the
ablation study, using the first stack frame to distinguish program positions (Section 4.1.4) and
thus preventing false loops has a clear positive effect overall, independent of the source language.
There are cases where it has a minor negative effect, though. In particular, unused-handlers
and tree-explore on Eff are faster with this optimization turned off. This is due to a loop being
unnecessarily duplicated because it gets used in different contexts. Using more context (i.e., two
frames) has a minimal positive effect for Eff overall, and a slightly stronger positive influence for
Effekt, but a very minor negative effect for Koka.

6.3.2 Specializing Data, Object, and Stack Frames (Section 4.1.3). Specializing the data, object and
stack frame representations does have a small positive influence for Eff, Koka, and most benchmarks
for Effekt. For to-outermost-handler and unused-handlers in Effekt, it has a negative effect,
which makes the positive influence on the other benchmarks disappear in the geometric mean.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:22 Gaißert, Bolz-Tereick, and Brachthäuser

6.3.3 Additional JIT Entry Points (Section 4.1.1). Overall, this optimization does not improve the
results in the geometric mean. For most benchmarks, it does not show any significant change at all.
It does, however, speed up multiple-handlers in Eff and Effekt by a factor of 2x resp. 1.7x. It also
has a slight positive effect for handler-sieve in those languages. However, fibonacci-recursive,
to-outermost-handler and unused-handlers get significantly faster for those languages when
disabling this optimization. For Koka, all differences from this optimization are relatively small.

6.3.4 Fast-check for Prompt Equality by Code Position (Section 4.1.2). This does not have a major
impact on the performance for any of the benchmarks measured. This might be due to the fact that
in the small micorbenchmarks used here, only very few different prompts occur, or prompts freshly
generated in every iteration are within the trace, and can be readily reasoned about by the JIT.

6.3.5 Conclusion. Standard optimizations for tracing JIT compilers like using the context for
false loop detection (Section 4.1.4) or specializing dynamically sized objects for common sizes
(Section 4.1.3) do have a positive effect here, too. Further optimizations can help with specific
benchmarks, but come with costs in other cases. Selectively applying them based on heutristics
might be a way to further improve results. Also, other optimizations could, of course, be explored.

6.4 Variations of Effects (RQ 4)
Are there differences in how well tracing JIT compilation performs for different variations
of effect handlers?

The largest difference in benchmarks between the different JITs is in the iterator benchmark. Here,
the Koka variant becomes dominated by the significant startup time (see subsection 6.4.3), which
also explains the slightly larger difference for resume-nontail for Koka. The Eff JIT is by no
means slow for iterator, but still less optimal than the Effekt variant, due to some additional guards
left in for checking the stack shape (subsection 6.4.1), which also affects countdown. triples in
our Koka implementation generates significantly more allocations in the traces, which at least in
part are due to managing evidence vectors (subsection 6.4.4). fibonacci-recursive is significantly
slower for Eff than the other languages on the JIT. This seems to be due to all function calls in Eff
being curried (subsection 6.4.2). unused-handlers is significantly slower for Eff than for Effekt,
which is in turn much slower than the Koka variant. The Eff implementation walks the stack twice
— once for fetching the handler, and once for capturing the continuation. Koka does not capture the
— one-shot and tail — continuation at all in this benchmark, and can use the evidence to directly
get the handler. This is also why to-outermost-handler is faster in the Koka JIT backend. In all
other cases, the implementations are within a factor of two of each other.

6.4.1 Prompt search for Eff. For Eff, some additional guards are left in for checking the stack shape
for iterator and countdown. The additional guards originate from the fact, that the RPython
JIT can more readily reason about the more locally allocated prompts in the Effekt and Koka
implementations than about the global ones in the Eff implementation (cf. Figure 5). Because of the
structure of our bytecode, it might walk the stack a second time to capture the continuation. This
could be aleviated by introducing a combined instruction to do both.

6.4.2 Curried functions for Eff. As noted above, for fibonacci-recursive, Eff is significantly slower
due to currying. All function applications are translated curried, and in fibonacci-recursive, the
partially applied function escapes in one of the loops, which leads to additional allocations. In the
other benchmarks, we did not observe any additional operations due to the currying, though, as
the allocation is close to the invocation, and easily optimized when both are in the same trace.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:23

6.4.3 Startup time for Koka. Koka has a significantly higher startup time than our other JIT
implementations. This is due to it loading the extensive separately compiled standard library
and running all static initializers therein. The simple approach to dynamic code loading we take
(Section 4.1.5), while allowing us to optimize the code well, also might have an influence here.

6.4.4 Representation of evidence vectors inKoka. As noted before, we represent the evidence vectors
in Koka as linked lists. This, together with the nested structure of the evidence, means that if the
evidence vector changes in a trace and the changed evidence vector escapes, we have to generate a
non-negligible amount of allocations. Because evidence vectors are sorted, this also potentially not
only includes added handlers, but also the prefix of the vector.

6.4.5 Conclusion. While in some cases, the variant of handlers we implement, can have a significant
influence on the performance, as for the prompt search in Eff (subsection 6.4.1) or the evidence
encoding in Koka (subsection 6.4.4), by and large the differences only occur in specific instances or
have a comparatively small effect. Possibly, specific optimizations would be able to remove those
overheads. To summarize, JIT compilation seems to be a viable approach for various kinds of effect
handlers, where lexical and evidence-based semantics do have slight advantages for some cases.

6.5 Baseline (RQ 5)
Does JIT-compiling effect handlers impact the performance of programs that do not use
effects?

As we have seen in Section 5.3, the Effekt JIT implementation is slower than some start-of-the-art
language implementations by a factor of about 2.3x. Some of this is likely to be due to our imple-
mentation being significantly less optimized than industrial-grade JIT compilers. The performance
being overall similar to PyPy, which also is implemented using RPython, further hints into this
direction—though both show different strengths and weaknesses. Our implementation outperforms
PyPy for the benchmarks list-tail and storage, in both of which a recursive function is central to
the benchmark. This might be due to PyPy not being particularly optimized for more functional
programs; Ocaml 5, for example, significantly outperforms the JIT for fibonacci-recursive from
the effect-handlers benchmark suite.

For the control-effect benchmarks, optimizing for effects does pay of: Even when the translation is
an idiomatic use of standard language features, like for iterator in JavaScript, our JIT can outperform
top-of-the-line industry JITs like V8, and is faster in almost all of the benchmarks. This shows a
clear potential for further optimizing control effects in mainstream language implementations.

6.6 Threats to Validity
Due to effect handlers being a relatively new language construct, there are not yet larger programs
written using them. Thus, the quantitative evaluation has to rely on microbenchmarks, and might
not generalize to future real-world uses of effect handlers. Also, analyzing our particular imple-
mentation means that our findings are limited to tracing just-in-time compilation, and might not
generalize. Implementation decisions unrelated to the implementation of effect handlers might—and
in some cases, do—have a non-negligible influence on the performance results. We tried to detect
and aleviate these cases, but some such issues might remain.

7 Related Work
In this section, we discuss prior work related to efficient compilation of effect handlers, as well as
other JIT compilation approaches for specific control effects, such as exceptions.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:24 Gaißert, Bolz-Tereick, and Brachthäuser

7.1 Abstract Machines for Control Operators
Similar to Pycket [Bauman et al. 2015b], we apply meta-tracing JIT compilation to (almost) off-the-
shelf interpreters. Our abstract machine is thus, intentionally, mostly standard. Following Dybvig
et al. [2007], the most significant difference to Hillerström et al. [2020], Biernacki et al. [2015],
and Fujii and Asai [2021] is that we support multiple prompts. These facilitate the implementation
of lexical effect handlers [Brachthäuser et al. 2020]. The biggest difference to Dybvig et al. [2007] is
that we implement shift0 rather than control (the continuation contains the delimiter), since
this corresponds closely to deep effect handlers [Forster et al. 2017; Kammar et al. 2013].

7.2 Efficient AOT Compilation of Effect Handlers
To the best of our knowledge, no prior work on JIT compilation of effects and handlers exists. Most
closely related is the work on ahead-of-time (AOT) compilation.
Pretnar et al. [2017] and later Karachalias et al. [2021b] define source-to-source rewrite rules

for effect handlers, which forms the basis of the Eff [Plotkin and Pretnar 2013] language. Their
rewrites push down effect handlers until they meet the corresponding effect operation in which
case the handling can be reduced statically.

Schuster et al. [2022] give a translation for lexical effect handlers to iterated continuation-passing
style [Danvy and Filinski 1990]. Their control operator takes evidence, which measures the distance
between the definition site of the effect handler and the callsite of an effect. In contrast, our control
operators are parametrized by prompts and we search for the correct handler by comparing prompts.
Schuster et al. [2020] show that under certain assumptions all abstractions related to effect handling
can be statically reduced. Müller et al. [2023] expands on the work of Schuster et al. [2022] and
makes the necessary connection between lexical scoping and subregioning evidence. Using this
technique, they report excellent performance. However, their implementation relies on whole
program optimizations performed by MLton [Matthew Fluet [n. d.]; Weeks 2006] and as such does
neither support higher-rank types nor effect-polymorphic recursion [Müller et al. 2023], that is,
recursive calls under an additional handler.

Both approaches, the one of Schuster et al. [2020] resp. Müller et al. [2023] and Karachalias et al.
[2021b] will most likely not be (fully) applicable in a setting with separate compilation, while JIT
compilation approaches are naturally well suited for separate compilation.

Recently, Ma et al. [2024] proposed a new efficient runtime system for supporting effect handlers,
for which they report very good performance. However, their approach heavily restricts the use
of multi-shot continuations. Specifically, a continuation can only be resumed multiple times if it
consists of exactly one stack segment.

7.3 JIT Compilation of Control Effects
The Java Hotspot Server compiler tries to directly connect throw statements with the surrounding
exception handlers and replaces them by a direct jump [Paleczny et al. 2001]. This typically works
after inlining has provided enough context for a matching exception handler to be found. Stadler
et al. [2009] copy captured stack frames lazily upon returning from them, however they do not
describe support for optimizing capture and resume with the help of the JIT compiler. In contrast,
continuation capture is often free in our approach, since we heap-allocate immutable frames, which
the JIT compiler can reason about and optimize.
The language implementation framework Truffle uses exceptions [Würthinger et al. 2013] to

implement non-local control flow transfer. Again, after inlining those transfers are optimized to be
efficient jumps. Zippy is a Python implementation using Truffle. Zippy uses inlining to optimize
Python generator execution across yield expressions and replaces them with a jump if inlining

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:25

can produce enough context to allow the resulting control flow to be analyzed at runtime [Zhang
et al. 2014]. If the transformation succeeds, the execution of producer and consumer code gets
fused and the overhead of using a generator is fully removed.
Pycket is a Racket implementation using the RPython framework [Bauman et al. 2015a, 2017].

Pycket is a direct implementation of a CEK machine [Felleisen and Friedman 1986] and uses
RPython to make this approach efficient, similar to the implementation described in the present
paper. The implementation approach of using the CEK machine makes first-class continuations
efficient and the RPython JIT compiler can often replace the invocation of captured continuations
into direct jumps, given enough inlined context.

Python has two main ways to support lightweight threads: asynchronous functions using yield
and greenlet [Rigo et al. 2011], a third-party library that implements thread switching by stack
copying. To the best of our knowledge the PyPy Python implementation [Bolz et al. 2009], also
based on RPython, does not optimize either alternative in any way. For asynchronous functions
yield points always terminate traces. For greenlets, the low-level stack switching is intransparently
hidden behind a function call the JIT has no knowledge about. This way producer/consumer loops
are optimized independent of each other and the stack switching cost is not removed.

8 Conclusion and Future Work
In this work, we started to explore JIT compilation as an implementation technique for effect
handlers. Specifically, we investigated how tracing JIT compilation compares to existing ahead-of-
time optimizing implementations, which classes of effectful programs can be optimized well by our
JIT, how specific optimizations influence the performance, which differences there exist between
the different variations of effect handlers, and how baseline performance is influenced. To this end,
we translated three different source languages to a common bytecode format and implemented an
interpreter using the RPython meta-tracing just-in-time toolkit. Our JIT implementation does not
consistently outperform other heavily optimized implementations, but often provides competitive
performance. In the JIT setting, common optimizations, implemented by other AOT compilers,
emerge automatically and do not need to be implemented manually. Uses where the continuation
is resumed at most once can be optimized well. Standard optimizations for tracing JIT compilers
help, while our more specific optimizations only have a minor impact on most benchmarks. The
differences for different variations of effect handlers are minor. Managing the evidence vector for
Koka can incur overhead, but also help to avoid expensive stack search in at least one instance. The
JIT can better reason about the lexical prompts in Effekt than the dynamic ones in Eff. For direct-
style code, our implementation is outperformed by state-of-the-art language implementations,
while outperforming their implementations of control-effects significantly.

One natural direction for future work would be to investigate other approaches of JIT compilation,
such as rewrite based AST interpreters [Würthinger et al. 2013], or hand-rolled method-based JIT
compilers, to evaluate whether and which of our results generalize to those settings. There are also
many opportunities for additional optimizations on top of the current approach. For example, it
might be interesting to explore heuristics for when to specialize to the particular handler, which we
always do right now. Additionally, our approach benefits from new optimizations and solutions for
common problems in the area of tracing JIT compilation, like tail duplication [Chevalier-Boisvert
and Feeley 2015; Gal et al. 2009]. Last but not least, while we already support three different
effect handler languages, it would be interesting to support additional features and variations of
effect handlers. This may include support for masks / lifts [Biernacki et al. 2017; Convent et al.
2020] or shallow handlers [Hillerström and Lindley 2018], which make the currently used handler
more dynamic and thus, make JITting particularly interesting. In this direction, it would also be

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:26 Gaißert, Bolz-Tereick, and Brachthäuser

interesting to explore more dynamic languages with effect handlers like Shonky [McBride 2016],
and implementations of effects for dynamic languages like JavaScript.

9 Data-Availability Statement
There is an artifact [Gaißert et al. 2025] which contains the example programs, the modified versions
of the Eff, Effekt, and Koka compilers (both source and binaries for the benchmarking system), the
common part of the compilation pipeline, as well as the implementation of the RPython-based just-
in-time compiler. This also includes (references to) the exact versions of the other implementations
benchmarked, and the code of the benchmarks. It also contains some tooling to simplify compiling,
executing and benchmarking the various variants on the given benchmarks or custom programs.
Finally, it contains the JIT trace logs and the raw measurement data.

Acknowledgments
The work on this project was supported by the Deutsche Forschungsgemeinschaft (DFG – German
Research Foundation) – project number DFG-448316946.

References
Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley. 2024. Effect Handlers for C via Coroutines. Proc.

ACM Program. Lang. 8, OOPSLA2, Article 358 (Oct. 2024), 28 pages. doi:10.1145/3689798
Håkan Ardö, Carl Friedrich Bolz, andMaciej Fijałkowski. 2012. Loop-aware optimizations in PyPy’s tracing JIT. In Proceedings

of the 8th Symposium on Dynamic Languages (Tucson, Arizona, USA) (DLS ’12). Association for Computing Machinery,
New York, NY, USA, 63–72. doi:10.1145/2384577.2384586

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. 2000. Dynamo: A Transparent Dynamic Optimization System. In
Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation (Vancouver,
British Columbia, Canada) (PLDI ’00). Association for Computing Machinery, New York, NY, USA, 1–12. doi:10.1145/
349299.349303

Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. Journal of Logical and Algebraic
Methods in Programming 84, 1 (2015), 108–123. doi:10.1016/j.jlamp.2014.02.001

Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Kirilichev, Tobias Pape, Jeremy G. Siek, and Sam Tobin-
Hochstadt. 2015a. Pycket: A Tracing JIT for a Functional Language. SIGPLAN Not. 50, 9 (aug 2015), 22–34. doi:10.1145/
2858949.2784740

Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Kirilichev, Tobias Pape, Jeremy G. Siek, and Sam Tobin-
Hochstadt. 2015b. Pycket: a tracing JIT for a functional language. In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming (Vancouver, BC, Canada) (ICFP 2015). Association for Computing Machinery,
New York, NY, USA, 22–34. doi:10.1145/2784731.2784740

Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-Hochstadt. 2017. Sound Gradual Typing: Only
Mostly Dead. Proc. ACM Program. Lang. 1, OOPSLA, Article 54 (oct 2017), 24 pages. doi:10.1145/3133878

Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. 2015. A Dynamic Continuation-Passing Style for Dynamic Delimited
Continuations. ACM Trans. Program. Lang. Syst. 38, 1, Article 2 (Oct. 2015), 25 pages. doi:10.1145/2794078

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2017. Handle with Care: Relational Interpretation of
Algebraic Effects and Handlers. Proc. ACM Program. Lang. 2, POPL, Article 8 (Dec. 2017), 30 pages. doi:10.1145/3158096

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Binders by Day, Labels by Night: Effect Instances
via Lexically Scoped Handlers. Proc. ACM Program. Lang. 4, POPL, Article 48 (Dec. 2019), 29 pages. doi:10.1145/3371116

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijałkowski, Michael Leuschel, Samuele Pedroni, and Armin Rigo. 2011. Allocation
Removal by Partial Evaluation in a Tracing JIT. In Proceedings of the 20th ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation (Austin, Texas, USA) (PEPM ’11). Association for Computing Machinery, New York, NY, USA,
43–52. doi:10.1145/1929501.1929508

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijałkowski, and Armin Rigo. 2009. Tracing the Meta-Level: PyPy’s Tracing
JIT Compiler. In Proceedings of the 4th Workshop on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems (Genova, Italy) (ICOOOLPS ’09). Association for Computing Machinery, New York,
NY, USA, 18–25. doi:10.1145/1565824.1565827

Jonathan Immanuel Brachthäuser. 2024. A Brief History of Effekt for Fellow Researchers. https://effekt-lang.org/evolution
Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as Capabilities: Effect Handlers and

Lightweight Effect Polymorphism. Proc. ACM Program. Lang. 4, OOPSLA, Article 126 (Nov. 2020). doi:10.1145/3428194

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

https://doi.org/10.1145/3689798
https://doi.org/10.1145/2384577.2384586
https://doi.org/10.1145/349299.349303
https://doi.org/10.1145/349299.349303
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/2858949.2784740
https://doi.org/10.1145/2858949.2784740
https://doi.org/10.1145/2784731.2784740
https://doi.org/10.1145/3133878
https://doi.org/10.1145/2794078
https://doi.org/10.1145/3158096
https://doi.org/10.1145/3371116
https://doi.org/10.1145/1929501.1929508
https://doi.org/10.1145/1565824.1565827
https://effekt-lang.org/evolution
https://doi.org/10.1145/3428194

Tracing Just-in-Time Compilation for Effects and Handlers 307:27

Jonathan Immanuel Brachthäuser and Daan Leijen. 2019. Programming with Implicit Values, Functions, and Control. Technical
Report MSR-TR-2019-7. Microsoft Research.

Oliver Bračevac, Nada Amin, Guido Salvaneschi, Sebastian Erdweg, Patrick Eugster, and Mira Mezini. 2018. Versatile Event
Correlation with Algebraic Effects. Proc. ACM Program. Lang. 2, ICFP, Article 67 (July 2018), 31 pages.

Carl Bruggeman, Oscar Waddell, and R. Kent Dybvig. 1996. Representing Control in the Presence of One-Shot Continuations.
In Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language Design and Implementation (Philadelphia,
Pennsylvania, USA) (PLDI ’96). Association for Computing Machinery, New York, NY, USA, 99–107. doi:10.1145/231379.
231395

Maxime Chevalier-Boisvert and Marc Feeley. 2015. Simple and Effective Type Check Removal through Lazy Basic Block
Versioning. In 29th European Conference on Object-Oriented Programming (ECOOP 2015) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 37), John Tang Boyland (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 101–123. doi:10.4230/LIPIcs.ECOOP.2015.101

Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin. 2020. Doo Bee Doo Bee Doo. Journal of Functional
Programming 30 (2020), e9. doi:10.1017/S0956796820000039

Antonio Cuni. 2010. High performance implementation of Python for CLI/.NET with JIT compiler generator for dynamic
languages. Dottorato di Ricerca in Informatica. Università degli Studi di Genova.

Olivier Danvy and Andrzej Filinski. 1989. A functional abstraction of typed contexts. DIKU Rapport 89/12, DIKU, University
of Copenhagen (1989).

Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In Proceedings of the Conference on LISP and Functional
Programming (Nice, France). ACM, New York, NY, USA, 151–160.

Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, KC Sivaramakrishnan, and LeoWhite. 2017. Con-
current system programming with effect handlers. In Proceedings of the Symposium on Trends in Functional Programming.
Springer LNCS 10788.

Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil Madhavapeddy. 2015. Effective concurrency
through algebraic effects. In OCaml Workshop.

R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry. 2007. A Monadic Framework for Delimited Continuations. Journal of
Functional Programming 17, 6 (Nov. 2007), 687–730. doi:10.1017/S0956796807006259

Matthias Felleisen. 1988. The Theory and Practice of First-class Prompts. In Proceedings of the Symposium on Principles of
Programming Languages (San Diego, California, USA). ACM, New York, NY, USA, 180–190.

Matthias Felleisen and Daniel P. Friedman. 1986. Control Operators, the SECD-machine, and the 𝜆-calculus. In Formal
Description of Programming Concepts III. Elsevier (North-Holland), Amsterdam, 193–217.

Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2017. On the Expressive Power of User-defined Effects:
Effect Handlers, Monadic Reflection, Delimited Control. Proc. ACM Program. Lang. 1, ICFP, Article 13 (Aug. 2017),
29 pages.

Maika Fujii and Kenichi Asai. 2021. Derivation of a Virtual Machine For Four Variants of Delimited-Control Operators.
In 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 195), Naoki Kobayashi (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 16:1–16:19. doi:10.4230/LIPIcs.FSCD.2021.16

Marcial Gaißert, CF Bolz-Tereick, and Jonathan Immanuel Brachthäuser. 2025. Artifact of the paper ’Tracing Just-in-time
Compilation for Effects and Handlers’. doi:10.5281/zenodo.16901452

Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R. Haghighat, Blake Kaplan,
Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael Bebenita,
Mason Chang, andMichael Franz. 2009. Trace-based just-in-time type specialization for dynamic languages. In Proceedings
of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation (Dublin, Ireland) (PLDI ’09).
Association for Computing Machinery, New York, NY, USA, 465–478. doi:10.1145/1542476.1542528

Google. 2025. V8 JavaScript engine. https://v8.dev
Hiroshige Hayashizaki, PengWu, Hiroshi Inoue, Mauricio J. Serrano, and Toshio Nakatani. 2011. Improving the Performance

of Trace-Based Systems by False Loop Filtering. SIGARCH Comput. Archit. News 39, 1 (mar 2011), 405–418. doi:10.1145/
1961295.1950412

Daniel Hillerström and Sam Lindley. 2018. Shallow Effect Handlers. In Proceedings of the Asian Symposium on Programming
Languages and Systems, Sukyoung Ryu (Ed.). Springer International Publishing, Cham, 415–435.

Daniel Hillerström, Sam Lindley, Bob Atkey, and KC Sivaramakrishnan. 2017. Continuation Passing Style for Effect Handlers.
In Formal Structures for Computation and Deduction (LIPIcs, Vol. 84). Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

Daniel Hillerström, Filip Koprivec, and Philipp Schuster (benchmarking chairs). 2023. Effect handlers benchmarks suite.
(2023). https://github.com/effect-handlers/effect-handlers-bench

Daniel Hillerström, Sam Lindley, and Robert Atkey. 2020. Effect handlers via generalised continuations. Journal of Functional
Programming 30 (2020), e5. doi:10.1017/S0956796820000040

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

https://doi.org/10.1145/231379.231395
https://doi.org/10.1145/231379.231395
https://doi.org/10.4230/LIPIcs.ECOOP.2015.101
https://doi.org/10.1017/S0956796820000039
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.4230/LIPIcs.FSCD.2021.16
https://doi.org/10.5281/zenodo.16901452
https://doi.org/10.1145/1542476.1542528
https://v8.dev
https://doi.org/10.1145/1961295.1950412
https://doi.org/10.1145/1961295.1950412
https://github.com/effect-handlers/effect-handlers-bench
https://doi.org/10.1017/S0956796820000040

307:28 Gaißert, Bolz-Tereick, and Brachthäuser

Roberto Ierusalimschy, Waldemar Celes, and Luiz Henrique de Figueiredo. 2024. The Programming Language Lua. https:
//www.lua.org

Natsu Kagami. 2023. Implement delimited continuations primitives. https://github.com/scala-native/scala-native/pull/3286
Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in Action. In Proceedings of the International Conference on

Functional Programming (Boston, Massachusetts, USA). ACM, New York, NY, USA, 145–158.
Georgios Karachalias, Filip Koprivec, Matija Pretnar, and Tom Schrijvers. 2021a. Compiler and replication of results: "Efficient

Compilation of Algebraic Effect Handlers". https://doi.org/10.5281/zenodo.5497862
Georgios Karachalias, Filip Koprivec, Matija Pretnar, and Tom Schrijvers. 2021b. Efficient Compilation of Algebraic Effect

Handlers. Proc. ACM Program. Lang. 5, OOPSLA, Article 102 (oct 2021), 28 pages. doi:10.1145/3485479
Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. 2017. Stream Fusion, to Completeness. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL 2017).
Association for Computing Machinery, New York, NY, USA, 285–299. doi:10.1145/3009837.3009880

Oleg Kiselyov and Hiromi Ishii. 2015. Freer Monads, More Extensible Effects. In Proceedings of the Haskell Symposium
(Vancouver, BC, Canada). ACM, New York, NY, USA, 94–105. doi:10.1145/2887747.2804319

Oleg Kiselyov, Chung-chieh Shan, and Amr Sabry. 2006. Delimited Dynamic Binding. In Proceedings of the International
Conference on Functional Programming (Portland, Oregon, USA). ACM, New York, NY, USA, 26–37.

Daan Leijen. 2016. Algebraic Effects for Functional Programming. Technical Report. MSR-TR-2016-29. Microsoft Research
technical report.

Daan Leijen. 2017a. StructuredAsynchronywithAlgebraic Effects. In Proceedings of theWorkshop on Type-Driven Development
(Oxford, UK). ACM, New York, NY, USA, 16–29.

Daan Leijen. 2017b. Type directed compilation of row-typed algebraic effects. In Proceedings of the Symposium on Principles
of Programming Languages. ACM, New York, NY, USA, 486–499. doi:10.1145/3093333.3009872

Daan Leijen and Anton Lorenzen. 2023. Tail Recursion Modulo Context: An Equational Approach. Proc. ACM Program.
Lang. 7, POPL, Article 40 (Jan. 2023), 30 pages. doi:10.1145/3571233

Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be Do Be Do. In Proceedings of the Symposium on Principles
of Programming Languages (Paris, France). ACM, New York, NY, USA, 500–514. doi:10.1145/3009837.3009897

Cong Ma, Zhaoyi Ge, Edward Lee, and Yizhou Zhang. 2024. Lexical Effect Handlers, Directly. Proc. ACM Program. Lang. 8,
OOPSLA2, Article 330 (Oct. 2024), 29 pages. doi:10.1145/3689770

Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. 2016. Cross-Language Compiler Benchmarking—Are We Fast
Yet?. In Proceedings of the 12th Symposium on Dynamic Languages (Amsterdam, Netherlands) (DLS’16). ACM, 120–131.
doi:10.1145/2989225.2989232

Matthew Fluet. [n. d.]. MLton. https://mlton.org [Last access: 21-10-2023].
Conor McBride. 2016. Shonky. https://github.com/pigworker/shonky
Marius Müller, Philipp Schuster, Jonathan Lindegaard Starup, Klaus Ostermann, and Jonathan Immanuel Brachthäuser. 2023.

From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers. Proc. ACM Program. Lang. 7,
OOPSLA2, Article 255 (oct 2023), 30 pages. doi:10.1145/3622831

Marius Müller, Philipp Schuster, Jonathan Lindegaard Starup, Klaus Ostermann, and Jonathan Immanuel Brachthäuser.
2023. From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers. Extended Technical Report.
University of Tübingen, Germany. https://se.informatik.uni-tuebingen.de/publications/mueller23lift.

Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay. 2023. Effects and Effect Handlers for Programmable Inference.
arXiv preprint arXiv:2303.01328 (2023).

Martin Odersky. 2023. Strawman: Suspensions for algebraic effects. https://github.com/scala/scala3/pull/16739
OpenJS Foundation. 2025. Node.js — Run JavaScript Everywhere. https://nodejs.org/en
Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java HotSpot Server Compiler. In Java (TM) Virtual Machine

Research and Technology Symposium (JVM 01). USENIX Association, Monterey, CA.
Michael Pall. 2025. The LuaJIT Project. https://luajit.org
David Peter. 2024. hyperfine. A command-line benchmarking tool. https://github.com/sharkdp/hyperfine [Last access:

29-07-2025].
Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerström, KC Sivaramakrishnan, Matija Pretnar,

and Sam Lindley. 2023. Continuing WebAssembly with Effect Handlers. 7, OOPSLA2, Article 238 (oct 2023), 26 pages.
doi:10.1145/3622814

Atze van der Ploeg and Oleg Kiselyov. 2014. Reflection Without Remorse: Revealing a Hidden Sequence to Speed Up
Monadic Reflection. In Proceedings of the Haskell Symposium (Gothenburg, Sweden) (Haskell ’14). ACM, New York, NY,
USA, 133–144.

Gordon Plotkin and Matija Pretnar. 2009. Handlers of algebraic effects. In European Symposium on Programming. Springer-
Verlag, 80–94. doi:10.1007/978-3-642-00590-9_7

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

https://www.lua.org
https://www.lua.org
https://github.com/scala-native/scala-native/pull/3286
https://doi.org/10.5281/zenodo.5497862
https://doi.org/10.1145/3485479
https://doi.org/10.1145/3009837.3009880
https://doi.org/10.1145/2887747.2804319
https://doi.org/10.1145/3093333.3009872
https://doi.org/10.1145/3571233
https://doi.org/10.1145/3009837.3009897
https://doi.org/10.1145/3689770
https://doi.org/10.1145/2989225.2989232
https://mlton.org
https://github.com/pigworker/shonky
https://doi.org/10.1145/3622831
https://se.informatik.uni-tuebingen.de/publications/mueller23lift
https://github.com/scala/scala3/pull/16739
https://nodejs.org/en
https://luajit.org
https://github.com/sharkdp/hyperfine
https://doi.org/10.1145/3622814
https://doi.org/10.1007/978-3-642-00590-9_7

Tracing Just-in-Time Compilation for Effects and Handlers 307:29

Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4 (2013).
doi:10.2168/LMCS-9(4:23)2013

Matija Pretnar, Amr Hany Shehata Saleh, Axel Faes, and Tom Schrijvers. 2017. Efficient compilation of algebraic effects and
handlers. Technical Report. Department of Computer Science, KU Leuven; Leuven, Belgium.

Python Software Foundation. 2025. . https://www.python.org/
Armin Rigo, Christian Tismer, and Jason Madden. 2011. greenlet: Lightweight concurrent programming. https://greenlet.

readthedocs.io/en/latest/ [Last access: 21-08-2025].
Amr Hany Saleh, Georgios Karachalias, Matija Pretnar, and Tom Schrijvers. 2018. Explicit Effect Subtyping. In Programming

Languages and Systems, Amal Ahmed (Ed.). Springer International Publishing, Cham, Switzerland, 327–354. doi:10.1007/
978-3-319-89884-1_12

Philipp Schuster and Jonathan Immanuel Brachthäuser. 2018. Typing, Representing, and Abstracting Control. In Proceedings
of the Workshop on Type-Driven Development (St. Louis, Missouri, USA). ACM, New York, NY, USA, 14–24. doi:10.1145/
3240719.3241788

Philipp Schuster, Jonathan Immanuel Brachthäuser, Marius Müller, and Klaus Ostermann. 2022. A Typed Continuation-
Passing Translation for Lexical Effect Handlers. In Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing
Machinery, New York, NY, USA, 566–579. doi:10.1145/3519939.3523710

Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. 2020. Compiling Effect Handlers in Capability-
Passing Style. Proc. ACM Program. Lang. 4, ICFP, Article 93 (Aug. 2020), 28 pages. doi:10.1145/3408975

Chung-chieh Shan. 2004. Shift to control. In Proceedings of the 5th workshop on Scheme and Functional Programming. 99–107.
Filip Sieczkowski, Mateusz Pyzik, and Dariusz Biernacki. 2023. A General Fine-Grained Reduction Theory for Effect

Handlers. Proc. ACM Program. Lang. 7, ICFP, Article 206 (Aug. 2023), 30 pages. doi:10.1145/3607848
KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting Effect

Handlers onto OCaml. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 206–221. doi:10.
1145/3453483.3454039

Lukas Stadler, Christian Wimmer, Thomas Würthinger, Hanspeter Mössenböck, and John Rose. 2009. Lazy continuations
for Java virtual machines. In Proceedings of the International Conference on Principles and Practice of Programming in Java.
ACM, New York, NY, USA, 143–152.

The PyPy Project. 2025. PyJitPl5. https://rpython.readthedocs.io/en/latest/jit/pyjitpl5.html [Last access: 21-08-2025].
Unison Computing. 2025. Introduction to Abilities: A Mental Model. https://www.unison-lang.org/docs/fundamentals/

abilities/
Stephen Weeks. 2006. Whole-Program Compilation in MLton. In Proceedings of the 2006 Workshop on ML (Portland, Oregon,

USA) (ML ’06). Association for Computing Machinery, New York, NY, USA, 1. doi:10.1145/1159876.1159877
Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Christian Humer, Gregor Richards,

Doug Simon, andMarioWolczko. 2013. One VM to Rule ThemAll. In Proceedings of the 2013 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming & Software (Indianapolis, Indiana, USA) (Onward! 2013).
Association for Computing Machinery, New York, NY, USA, 187–204. doi:10.1145/2509578.2509581

Ningning Xie and Daan Leijen. 2021. Generalized Evidence Passing for Effect Handlers: Efficient Compilation of Effect
Handlers to C. Proc. ACM Program. Lang. 5, ICFP, Article 71 (aug 2021), 30 pages. doi:10.1145/3473576

Wei Zhang, Per Larsen, Stefan Brunthaler, and Michael Franz. 2014. Accelerating Iterators in Optimizing AST Interpreters. In
Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications
(Portland, Oregon, USA) (OOPSLA ’14). Association for Computing Machinery, New York, NY, USA, 727–743. doi:10.
1145/2660193.2660223

Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-safe Effect Handlers via Tunneling. Proc. ACM Program. Lang. 3,
POPL, Article 5 (Jan. 2019), 29 pages. doi:10.1145/3290318

Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers. 2020. Handling Bidirectional Control Flow. Proc. ACM Program.
Lang. 4, OOPSLA, Article 139 (Nov. 2020), 30 pages. doi:10.1145/3428207

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

https://doi.org/10.2168/LMCS-9(4:23)2013
https://www.python.org/
https://greenlet.readthedocs.io/en/latest/
https://greenlet.readthedocs.io/en/latest/
https://doi.org/10.1007/978-3-319-89884-1_12
https://doi.org/10.1007/978-3-319-89884-1_12
https://doi.org/10.1145/3240719.3241788
https://doi.org/10.1145/3240719.3241788
https://doi.org/10.1145/3519939.3523710
https://doi.org/10.1145/3408975
https://doi.org/10.1145/3607848
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3453483.3454039
https://rpython.readthedocs.io/en/latest/jit/pyjitpl5.html
https://www.unison-lang.org/docs/fundamentals/abilities/
https://www.unison-lang.org/docs/fundamentals/abilities/
https://doi.org/10.1145/1159876.1159877
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/3473576
https://doi.org/10.1145/2660193.2660223
https://doi.org/10.1145/2660193.2660223
https://doi.org/10.1145/3290318
https://doi.org/10.1145/3428207

307:30 Gaißert, Bolz-Tereick, and Brachthäuser

A Appendix
A.1 Complete formal presentation of BC

Program Syntax:

Program P ::= Ð⇀
Bi programs

Blocks B ::= { l(Ð⇀xi) : s } basic blocks
Block references B? ::= l block labels

| B concrete blocks
Statements s ::= x ← v; s literals / constants

| Ð⇀xi ← primitive f (Ð⇀xj); s primitive calls
| jump B? jumps
| if x1 then B? (Ð⇀xi) else s conditional jumps
| push B? (Ð⇀xi); s pushing frames
| return (Ð⇀xi) returning

metastacks
| xo ← shift xp; s capturing stacks
| xo ← get dynamic xp; s accessing dynamic bindings
| xo ← new stack B? (Ð⇀xi) @ xp; s creating stacks
| xo ← new stack B? (Ð⇀xi) @ xp with xb; s creating stacks with dynamic binding
| push stack x; s pushing stacks

objects
| x ← new V (Ð⇀xj); s creating objects
| x .m(Ð⇀xi) invoking methods

data
| x ← t (Ð⇀xi); s constructing data

| x match {
ÐÐÐÐÐÐÐ⇀
t (Ð⇀xi) ⇒ B?} pattern matching

registers
| x1← x2; s copying
| x1 ↔ x2; s swapping
| drop x; s dropping

VTables V ::= {
ÐÐÐÐÐ⇀
mi ↦→ B?i } virtual tables

Labels and tags l, t, m
Variables x
Values v ::= (V , Ð⇀v) object

| M continuations (see below)
| (t, Ð⇀v) data value
| null null value
| · · · values of base types (not shown here)

Fig. 9. Syntax of the bytecode format BC.

The main text only showed the parts of BC that are especially important for the translation of
effect handlers. Here, we will present the full language, with the syntax shown in Figure 9.

A.1.1 Details for Delimited Control. In Section 3.1, we only hinted at how the instructions for
delimited control are to be interpreted. We will now look into them in detail.

Creating a new stack. The instruction new stack creates a new stack segment marked with a
prompt given by xp and a single frame with return address l and localsÐ⇀xi . It constructs the resulting
(meta)stack and assigns it to register x0. Always installing a frame provides us with the invariant

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:31

Stack syntax:
Stacks k ::= # empty stack

| l(Ð⇀vi) :: k stack frame
Metastacks M ::= ◦ empty metastack

| k @ v ↦→ v ::: M stack with prompt v
Abstract machine syntax:
Abstract machine m ::= ⟨ P X s M ⟩ abstract machine tuple

| ⟨ P X s M ↫ (vp) M ⟩ (unwinding)
| ⟨ P X s M ↬ M ⟩ (rewinding)
| ⟨ P X s (vp) ? M M ⟩ (lookup)

Register file X ::= {ÐÐÐÐ⇀xi ↦→ vi}

Fig. 10. Syntax of the abstract machine for BC.

that the inner stack level is never empty for metastacks passed around or being installed. We use
the notation X { x ↦→ v } to denote updating the register x to v in X .

(new stack) ⟨ X x ← new stack l(Ð⇀xj) @ xp; s ⟩
−→ ⟨X { x ↦→ l(Ð⇀vj) :: # @ vp ↦→ null ::: ◦} s ⟩ if vj = X (xj), vp = X (xp)

Pushing a stack. Installing a delimiter amounts to creating a stack and pushing it, which we can
achieve with the push stack instruction:

(push stack) ⟨ X push stack x; s M ⟩ −→ ⟨ X s M′ ↬ M ⟩ if M′ = X (x)

To copy the stack segments to the current stack, push stack switches to a different abstract machine
state, for which we have two evaluation rules that install the metastack segment by segment.

(rewind) ⟨ X s k′ @ vp ↦→ vb ::: M′ ↬ M ⟩ −→ ⟨ X s M′ ↬ k′ @ vp ↦→ vb ::: M ⟩
(rewind 0) ⟨ X s ◦↬ M ⟩ −→ ⟨ X s M ⟩

Capturing the continuation. The instruction shift captures the stack segments up to and including
the prompt we pass it:

(shift) ⟨ X xo ← shift xp; s M ⟩ −→ ⟨ X s ◦↫ (vp) M ⟩ if vp = X (xp)

It is dual to push stack and also switches to a special abstract machine state. As long as we do not
encounter the prompt we are searching for, we move the topmost stack segment to the captured
continuation and continue, effectively reversing the order of stacks in the captured continuation.

(unwind ≠) ⟨ X s M ↫ (vp) k @ vq ↦→ vb ::: M′ ⟩
−→ ⟨ X s k @ vq ↦→ vb ::: M ↫ (vp) M′ ⟩ if vp ≠ vq

Once we find the correct prompt, we also move this last stack segment and store the final captured
continuation in a register:

(unwind 0) ⟨ X s M′ ↫ (vp) k′ @ vp ↦→ vb ::: M ⟩
−→ ⟨ X { x ↦→ k′ @ vp ↦→ vb ::: M′ } s M ⟩

As seen above, to resume the continuation, we use the push stack instruction to rewind it back
onto the current metastack.

A.1.2 Details for Dynamic Binding. Here, we will describe the details of how the dynamic binding
described in Section 3.2 works.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:32 Gaißert, Bolz-Tereick, and Brachthäuser

Introducing a binding. To introduce a new binding, we include a separate form of new stack
which additionally binds a value xb at a given prompt:

(new stack with bind) ⟨ X x ← new stack l(Ð⇀xj) @ xp with xb ; s ⟩
−→ ⟨X { x ↦→ l(Ð⇀vj) :: # @ vp ↦→ vb ::: ◦} s ⟩

if vj = X (xj), vp = X (xp), vb = X (xb)

This instruction behaves just like (new stack) but stores the value of the binding in the second field
of a metastack segment. To introduce the binding in the current scope, we need to also push the
newly created stack. Note that we can use the same prompt as described in Subsection 3.1 to capture
the delimited continuation up to this point. This is useful, as for effect handlers, we will often want
to install both a dynamic binding for the handler and a prompt to delimit the continuation.

Accessing a binding. To access the dynamic binding associated with a given prompt, we can now
use the get dynamic instruction, which looks very similar to shift:

(get dynamic) ⟨ X xo ← get dynamic xp; s M ⟩
−→ ⟨ X xo ← get dynamic xp; s (vp) ? M M ⟩ if vp = X (xp)

It also uses two rules to implement searching the stack. Note that these are very similar to the
unwind rules in Section 3.1, but instead of capturing the continuation, we leave the stack as-is and
retrieve the value associated with the prompt. Together, these instructions allow us to dynamically
bind values to prompts on the stack.

(lookup ≠) ⟨ X s (vp) ? k @ vq ↦→ vb ::: M′ M ⟩
−→ ⟨ X s (vp) ? M′ M ⟩ if vp ≠ vq

(lookup 0) ⟨ X xo ← get dynamic xp; s (vp) ? k′ @ vp ↦→ vb ::: M′ M ⟩
−→ ⟨ X { xo ↦→ vb } s M ⟩

A.1.3 Objects. We encode all kinds of function, closure, and object types using two constructs:
s ::= x ← new V (Ð⇀xj); s object creation
| x .m(Ð⇀xi) method invocation

with the following evaluation rules:
(new) ⟨ X x ← new V (Ð⇀xj); s ⟩ −→ ⟨ X {x ↦→ (V ,Ð⇀vj)} s ⟩ if vj = X (xj)
(invoke) ⟨ X x .m(Ð⇀xi) ⟩ −→ ⟨ {ÐÐÐÐÐ⇀xk ↦→ vk} s′ ⟩

if Ð⇀vk =
ÐÐÐ⇀
X (xi), Ð⇀vj and { l(Ð⇀xk) : s′ } = V (m) and X (x) = (V ,Ð⇀vj)

Note that there are no constructs for inheritance or similar concepts, and there are no classes. Also
note that the formalization matches methods by index for simplicity; the actual implementation
supports names, which simplifies separate compilation and debugging.

A.1.4 Stack management and normal control flow. As noted earlier, within the stack segments, we
have a normal stack. We can use push to add a new stack frame here:

(push) ⟨ X push l(Ð⇀xj); s k @ v1 ↦→ v2 ::: M ⟩
−→ ⟨ X s l(Ð⇀vj) :: k @ v1 ↦→ v2 ::: M ⟩ if vj = X (xj)

This will install a new frame on the stack with a label l, which will be jumped to on the next return.
It also allows us to explicitly save some values, which will be passed to the code at l alongside the
returned value(s).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:33

To simulate a common calling convention for functions, we can follow this with a jump, which
we could also use on its own for tail calls:

(jump) ⟨ X jump {l(Ð⇀xj) : s} M ⟩ −→ ⟨ X |Ð⇀xj s M ⟩

Here, we simply update the currently evaluated statement. Formally, we also restrict the register
file to the registers explicitly declared for this block. To pass arguments, we would have to put
them into registers agreed on by convention.

Now, if we want to return to the frames we pushed earlier, we would use the return instruction:

(ret) ⟨ X return(Ð⇀xi) {l(Ð⇀xj) : s}(Ð⇀vk) :: k @ v1 ↦→ v2 ::: M ⟩
−→ ⟨ {ÐÐÐÐ⇀xj ↦→ vj} s k @ v1 ↦→ v2 ::: M ⟩

forÐ⇀vj =
ÐÐÐ⇀
X (xi), Ð⇀vk

We can return multiple values, which are combined with the locals from the stack frame to get the
new register values. If we reach the bottom of a stack segment, we remove the prompt and return
to the next one:

(underflow) ⟨ X return(Ð⇀xi) # @ v1 ↦→ v2 ::: M ⟩ −→ ⟨ X return(Ð⇀xi) M ⟩

A.1.5 Other constructs. To write meaningful programs, the bytecode, of course, also supports many
additional standard features, like conditional jumps, some instructions for register management,
data values, and some instructions for register management. Also, labels are mapped to blocks
using substitution. These are modelled straghtforwardly in the full syntax (Figure 9) and semantics
(Figure 11) but we won’t describe them in detail here.

A.1.6 Parts not modeled here. The calculus does not model some concerns, which are supported by
the implementation. The first is backtrackable local mutable state, with a region element attached to
each stack segment, which is out-of-scope for this paper. Another is dynamic code loading: We allow
a running program to load new blocks from a file at runtime, which also can have static initializers.
We leave those features out of the formalization to simplify the already sizeable calculus, and
focus on the features needed to describe the main features of this work. Also, the implementation
already partially support some variants of the presented instructions in preparation for future work
(Section 8).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:34 Gaißert, Bolz-Tereick, and Brachthäuser

Reductions without program context:
(const) ⟨ X x ← v; s M ⟩ −→ ⟨ X {x ↦→ v} s M ⟩
(prim) ⟨ X Ð⇀xi ← primitive f (Ð⇀xj); s M ⟩ −→ ⟨ X {ÐÐÐÐ⇀xi ↦→ vi} s M ⟩ if f (

ÐÐÐ⇀
X (xj)) =

Ð⇀vi
Register Management
(copy) ⟨ X x1← x2; s M ⟩ −→ ⟨ X {x1 ↦→ v} s M ⟩ if v = X (x2)
(swap) ⟨ X x1 ↔ x2; s M ⟩ −→ ⟨ X {x1 ↦→ v1, x2 ↦→ v2} s M ⟩ if v1 = X (x1), v2 = X (x2)
(drop) ⟨ X drop x; s M ⟩ −→ ⟨ X |dom(X)− x s M ⟩ if v = X (x2)
Data
(cons) ⟨ X x ← t (Ð⇀xi); s M ⟩ −→ ⟨ X {x ↦→ (t,Ð⇀vi)} s M ⟩ if vi = X (xi)
(match) ⟨ X x match {

ÐÐÐÐÐÐÐÐ⇀
tc (Ð⇀xic) ⇒ B?c } M ⟩ −→ ⟨ X {ÐÐÐÐÐ⇀xic ↦→ vi} jump B?c M ⟩

if tc = t and X (x) = (t,Ð⇀vi)
Conditional Jumps

(if t) ⟨ X if x1 then {l(
Ð⇀
x′i) : s1}(Ð⇀xi) else s2 M ⟩ −→ ⟨ {ÐÐÐÐ⇀x′i ↦→ vi} s1 M ⟩ if vi = X (xi)

and X (x1) = ⊤
(if f) ⟨ X if x1 then {l(

Ð⇀
x′i) : s1}(Ð⇀xi) else s2 M ⟩ −→ ⟨ X s2 M ⟩ if X (x1) = ⊥

We use f |X as the restriction of a function f to a domain X (remove all other register values).
Handling of program context:
(Pcong) ⟨ P X s M ⟩ −→ ⟨ P X ′ s′ M′ ⟩

if ⟨ X s M ⟩ −→ ⟨ X ′ s′ M′ ⟩
(Pcong↬) ⟨ P X s M1 ↬ M2 ⟩ −→ ⟨ P X ′ s′ M′1 ↬ M′2 ⟩

if ⟨ X s M1 ↬ M2 ⟩ −→ ⟨ X ′ s′ M′1 ↬ M′2 ⟩
(Pcong↫) ⟨ P X s M1 ↫v M2 ⟩ −→ ⟨ P X ′ s′ M′1 ↫v M′2 ⟩

if ⟨ X s M1 ↫v M2 ⟩ −→ ⟨ X ′ s′ M′1 ↫v M′2 ⟩
(lookup B) ⟨ P X Σ[l] M ⟩ −→ ⟨ P X Σ[B] M ⟩ if B = { l(Ð⇀xi) : s } ∈ P
where
Label contexts Σ ::= jump □

| if x1 then □(Ð⇀xi) else s
| push □(Ð⇀xi); s
| xo ← new stack □(Ð⇀xi) @ xp; s
| xo ← new stack □(Ð⇀xi) @ xp with xb; s
| x ← new {ÐÐÐÐÐ⇀mi ↦→ Bi, mj ↦→ □,

ÐÐÐÐÐ⇀
mk ↦→ B?k}(

Ð⇀xj); s

Fig. 11. Remaining abstract machine semantics for the JIT bytecode.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:35

A.2 Benchmark descriptions
Figures 12 and 13 give concise descriptions of the control effect benchmarks from [Hillerström et al.
2023] resp. [Marr et al. 2016].

countdown (input: 200M). Counts down in a loop using effect operations to decrement a state.
fibonacci_recursive (input: 42). Standard recursive computation of Fibonacci numbers.
generator (input/tree height: 25). Generates a complete binary tree (DAG representation), traverses it
in-order, converts it to an explicit stream structure (with thunks), and sums the values.
handler_sieve (input: 60k). Computes the sum of all primes up to the input using nested handlers for trial
division (one per prime).
iterator (input: 40M). Emits an ascending range of values and then takes their sum.
nqueens (input: 12). Solves the N-Queens problem using brute-force search and a Pick/Fail effect.
parsing_dollars (input: 20k). Reads an input via an effect, counts the dollars per line and emits it, outputs
the sum until the first non-dollar, non-newline character.
product_early (input: 100k). Computes the product of a linked list non-tail recursively, aborts early on 0.
resume_nontail (input: 10k). Repeatedly performs an effect in a loop in non-tail position, and resumes in a
non-tail position.
tree_explore (input/tree height: 16). In a full binary tree, computes the maximal result of reducing a binary
operation over all possible paths.
triples (input: 300). Computes the hash sum of strictly decreasing triples that sum up to a target number.

Fig. 12. Short descriptions of the benchmarks, adapted from Hillerström et al. [2023].

bounce (iterations: 10k). Simulation of a box with bouncing balls.
list-tail(iterations: 10k). List creation and traversal.
mandelbrot(input: 500). Classic Mandelbrot computation.
nbody(input/simulation steps: 250k). Classic n-body simulation of solar system.
permute(iterations: 10k). Generate permutations of an array.
queens(iterations: 10k). Solver for eight queens problem.
sieve(iterations: 10k). Sieve of Eratosthenes.
storage(iterations: 2k). Tree of arrays to stress GC.
towers(iterations: 10k). Towers of Hanoi.

Fig. 13. Short descriptions of the benchmarks from Marr et al. [2016]

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:36 Gaißert, Bolz-Tereick, and Brachthäuser

return frame

prompt Decide = x

.
.
.

.
.
.

decide: @lbl(prompt)

stack heap

global variable

(a) Single handler. Prompts are merged.

return frame

prompt Decide = x

.
.
.

return frame

prompt dbf137

.
.
.

.
.
.

decide: @lbl(prompt)

stack heap

global variable

(b) Handler for multiple effects.

Fig. 14. How handlers are modelled for Eff on the stack for a single installed handler. @lbl refers to the
handler implementation (including shift). The prompt is in red, the handler implementation in blue.

A.3 Source Language translations in detail
We will now take a look at the source languages we support, describing how those languages’ effect
handlers map to the constructs in BC. Figure 5 already provided an overview over the different
translations in BC-like pseudocode. The following subsections will describe the translations in
more detail, using concrete bytecode.

A.3.1 Eff. In Eff, handlers can be defined separately from where they are installed. Consider the
following Eff program snippet:
effect Decide : bool;;

let enumerate = handler

| effect Decide k → k true + k false

| x → x + 1

let foo () = if perform Decide then 0 else 1

let run () = with enumerate handle foo ()

To translate this, we first generate a global prompt for each handler, in the static initializer, respec-
tively at the program entry point:

x1 ← "Decide";

x2 ← primitive freshlabel();

_ ← primitive setGlobal(x1, x2)

Let’s now look at the translation of the handler. Since the same handler could be used in multiple
places, we translate a handler into the equivalent of a higher-order function. The translation is the
following:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:37

enumerate(x0):

x1 ← new { decide ↦→ @206 }();

x2 ← "Decide";

x2 ← primitive getGlobal(x2);

x1 ← new stack @215() @ x2 with x1;

push stack x1;

x0.apply()

Here, we construct a handler value as an object with methods for the operations,
then install the previously generated prompt with the handler as a dynamic binding — in Eff,

handlers are bound dynamically. Finally, we invoke the parameter, which corresponds to the body
of the handle . . . with This conceptually leaves us with a stack and heap as sketched in
figure 14a.

The (slightly simplified) implementation of the handler is:
@206():

x1 ← "Decide";

x1 ← primitive getGlobal(x1);

x0 ← shift x1;

jump @205 // actually a match on unit

@205(x0):

n0 ← 1;

push @204(x0);

jump @199

@199(n0, x0):

push stack x0;

return n0

Here, we first capture the appropriate part of the stack using shift, and then call the implementation
of the operation. Then, we execute the handler operation, and finally push the captures stack part
back on the (potentially changed) stack, and return into it, effectively resuming the continuation.
Installing the handler for a subprogram is now as simple as calling the above function, passing

the body as a closure:
run(x0): // actually, there is still a match on unit first

x0 ← new { apply ↦→ 230 }();

x1 ← "Decide";

x1 ← primitive getGlobal(x1);

push @233();

jump enumerate

In foo, we can now perform the Decide operation as follows:
@223():

x0 ← "Decide";

x0 ← primitive getGlobal(x0);

x0 ← get dynamic x0;

x1 ← unit();

push @222();

x0.decide(x1)

Here, we first get the prompt for the effect. Then, we retrieve the handler implementation using
get dynamic, and finally call the operation on it. Note that get dynamic and shift both search

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:38 Gaißert, Bolz-Tereick, and Brachthäuser

return frame

prompt Decide1278

.
.
.

.
.
.

decide: @lbl(prompt)

passed via parameters:

stack heap

Fig. 15. How handlers are modelled for Effekt on the stack for a single installed handler. @lbl refers to the
handler implementation (including shift). The prompt is in red, the handler implementation in blue.

for the same prompt on the stack, which could be optimized further at the cost of a more complex
calculus, merging the two operations. Practically, this does not make a difference after a trace
was optimized, as those instructions closely follow each other and the second search will be
optimized out, safe for the very unlikely case that tracing starts at the invocation of the handler
(after get dynamic).

For handlers that handle multiple operations, this scheme becomes slightly more involved. Now,
we install multiple prompts: One for each of the handlers, for the dynamic binding, and an additional
(fresh) one to shift to. The resulting structure of the stack is sketched in Figure 14b.

A.3.2 Effekt. In Effekt, effect handlers are bound lexically, while still capturing stack dynamically.
To support this, we generate new prompt labels for each handler. This means that there are no
static labels which we need to generate at program startup or dynamic code loading.

Consider the following Effekt program:
interface Decide {

def decide(): Bool

}

def foo() = {

if (do decide()) { 0 } else { 1 }

}

def main() = try {

1 + foo()

} with Decide {

def decide() = resume(true) + resume(false)

}

Installing and defining a handler are the same syntactic construct, so we do not take the indirection
via a higher-order function. The handler definition is then translated to the following:
main():

x0 ← primitive freshlabel();

x1 ← new stack @3() @ x0;

push stack x1;

x0 ← new { decide ↦→ @7 }(x0);

// inlined definition of foo

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:39

return frame

prompt Decide1278

.
.
.

.
.
.

decide: @lbl()

decide: ("decide", prompt, hnd, hevv)

.
.
.

stack heap

global mutable reference

Fig. 16. How handlers are modelled for Koka on the stack for a single installed handler. @lbl refers to the
handler implementation (excluding shift). The prompt is in red, the handler implementation in blue, and the
evidence vector in purple. The evidence vector is a linked list, simplified here for aesthetics.

Here, we first create a fresh prompt, and directly create and install a new stack with it. Also, we
instantiate a capability, which holds the handler implementation and closes over the prompt. Then,
we directly continue with the handler body. The stack at this point is sketched in Figure 15. Note
that there are no return clauses needed, so the return frame installed does not do any computation
(but forwarding the result).

When later, in foo (which happens to have been inlined by the compiler here), we execute the
effect operation, we simply call the correct method on the capability passed down to us:
// inlined definition of foo:

push @14();

jump @2

@2(x0):

x0.decide()

@14(n0):

// continues after call to decide in foo

A.3.3 Koka. In Koka, effect handlers are implemented using a global mutable evidence vector,
which stores both the handler implementations and labels of the currently in-scope handlers, sorted
by name. [Xie and Leijen 2021] We implement those vectors as singly-linked lists in our backend,
which sometimes causes more allocations than an array would, but simplifies the implementation.

Consider the following Koka program:
effect decide

ctl decide(): bool

fun foo(): decide int

if decide() then 0 else 1

fun main(): int

with handler

return(x) 1 + x

ctl decide()

resume(True) + resume(False)

foo()

To install the handler for decide in main, we generate the following:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:40 Gaißert, Bolz-Tereick, and Brachthäuser

main():

n0 ← 3; // statically computed index in the evidence vector

x0 ← new { apply ↦→ @82 }(); // handler implementation

x0 ← "std/core/hnd/Clause0"(x0);

x0 ← "@Hnd-decide"(n0, x0);

x1 ← new { apply ↦→ @86 }(); // return clause

x2 ← new { apply ↦→ @94 }(); // handler body

x3 ← "minimal/@tag-decide";

x3 ← primitive getGlobal(x3);

jump "std/core/hnd/@hhandle-vm"

Here, "std/core/hnd/@hhandle-vm" is an internal standard library function implemented as:
fun @hhandle-vm(tag:htag<h>, h : h<e,r>, ret: a → e r, action : () → e1 a) : e r

val w0 = evv-get()

val m = fresh-marker()

val ev = Ev(tag,m,h,w0)

val w1 = evv-insert(w0,ev)

evv-set(w1)

val res = @reset-vm(m,ret,cast-ev0(action))

evv-set(w0)

res

which is translated to bytecode in a straightforward way. Here, we first get the current evidence
vector from a global variable, and generate a fresh prompt (using the BC-primitive freshlabel).
We then generate a new evidence record with the given contents. Most notably, this contains the
prompt and a pointer to the handler implementation passed to us. We then insert this new evidence
into the current evidence vector, and update it. In the end, we restore the old evidence vector and
return the result.
The call to @reset-vm handles the control-flow component of installing the handler, which is

the following:
"std/core/hnd/@reset-vm"(x0,x1,x2):

x0 ← new stack @0141(x1) @ x0;

push stack x0;

x2.apply()

@0141(x0, x1):

x1.apply(x0)

This is almost the usual definition of reset0 as described in Section [#sec-delimcc-std], but with a
frame that calls the return clause. Also, because of the structure of the Koka library for handlers,
we do not inline this code at the callsite and thus pass in the body as a function object.

Above, we just jumped over the handler implementation and Clause0 constructor. What @82
does is to wrap the actual handler implementation in a call to @yield-to-vm:
noinline fun @yield-to-vm(m : marker<e1,r>, clause : (b → e1 r) → e1 r) : e1 b

val w0 = evv-get()

val r = @yield-to-prim-vm(m, clause)

evv-set(w0)

r

This stores (and later restores) the evidence vector around the handler, and then calls the actual
handler implementation via @yield-to-prim-vm. which is translated as:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:41

"@yield-to-prim-vm"(x0,x1):

x0 ← shift x0;

x0 ← new { apply ⇒ @208 }(x0);

x1.apply(x0)

@208(x0, x1): // resume

push stack x1;

return x0

In foo, we then can perform the decide operation using the following code:
foo():

n0 ← 0;

push @43(n0);

jump "getCurrentEvv" // evv-get()

@43(x0, n0):

x0 ← primitive promotePtr(x0); // assume x0 is static

push @42();

jump "elt"

@42(x0):

push @38(); // rest of foo

[[x0.hnd.implementation.get]].apply([[x0.marker]], x0) // yield-to missing

Here, @42 is actually doing a series of pattern matches, whose effect we summarized within [[]].
There are two standard library functions called here: - getCurrentEvv is a helper function which
simply returns the current evidence vector (which is stored in a global mutable variable) - elt
which returns the nth element of an evidence vector.

Once we have the correct entry of the evidence vector, all we have to do is to call the handler
stored inside it.
Note that the actual generated code by our Koka implementation is more complicated than

presented here, because function calls are more involved for separate compilation (they include a
symbol lookup). Also, we simplified the control flow by inlining jumps and push/return pairs to
improve readability.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:42 Gaißert, Bolz-Tereick, and Brachthäuser

effect Exc : unit

let inner () = perform Exc

let outer () = handle
inner ()

with
| effect Exc k → ()
| x → x

let rec loop n =
if n ≥ 0
then (outer (); loop (n - 1))
else ()

(a) Eff code.

loop1(i53):
guard_not_invalidated ⇒ loop [i53]
< repetition bookkeeping >
i55 = int_eq(i53, 0)
guard_false(i55) ⇒ then [i53]
i56 = int_lt(i53, 0)
guard_false(i56) ⇒ else [i53]
< call outer, install handler >
< invoking body, then handler >
< capture the continuation >
< returning, repetition bookkeeping >
i58 = int_sub(i53, 1)
jump loop1(i58)

(b) Optimized loop.

Fig. 17. Example for zero-shot continuation capture.

A.4 Detailed Traces for Discussion
As further detail for the discussion in Section 6.2, here, we show the traces for minimal examples
of the respective usage of continuations, first in Eff, and then summarized in all three languages.

A.4.1 Case 1: zero-shot. To look into this case more detail, consider the Eff example code in
Figure 17a. When we now repeatedly execute outer in a loop, it gets traced by the JIT. The
resulting optimized loop for Eff looks like shown in Figure 17b, with source code positions selectively
annotated in < > using natural language. The trace for Effekt looks the same, and the one for Koka
merely contains an additional guard on the evidence vector. Except for this guard in Koka, there are
no operations generated for capturing the continuation, since it will never escape the loop and the
escape analysis detects this fact. Note that this does not include guards generated to check that the
current stack has the appropriate shape. The guard for Koka is necessary since evidence is stored
in a global mutable reference and could thus, in principle, have been modified. To summarize, in all
three backends, capturing the continuation has been completely optimized away for this example.

A.4.2 Case 2: one-shot and tail. For the one-shot and tail case, let’s again look into the trace for a
simplified example in slightly more detail. Ideally we can elide capturing the continuation at all,
since it is effectively left in place. Let’s look at the example in Eff in Figure 18.
We moved the handler definition out of the loop compared to the previous case, so we can

only observe the invocation in the loop traces. Again, on the right, we provide a summary of the
optimized trace. The only part of the continuation capture left is an addition and a guard. Those
are introduced by first checking labels by definition site as described in Section 4.1.2. Note that
checking if we are still under the same handler is necessary for correctness, since we might execute
the same loop under a different handler later. Thus, modulo a single addition instruction, those
loops are as good for this case as we could hope to get. There is no code generated to copy the
continuation. Furthermore, in our implementation we did not need to special-case this scenario, for
none of the source languages. The necessary checks have automatically been inserted by RPython
and the optimization is sound by construction. As in the previous case, the traces for the other
languages look the same, except that even the guard for Koka can be hoisted out of the loop.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:43

effect Fun : unit

let inner () = perform Fun

let rec loop n =
if n ≥ 0

then (inner ();
loop (n - 1))

else ()

let outer n = handle
loop n

with
| effect Fun k → k ()
| x → x

(a) Eff code

loop1(i65):
guard_not_invalidated ⇒ loop [i65]
< check loop conditioon >
i67 = int_eq(i65, 0)
guard_false(i67) ⇒ then [i65]
i68 = int_lt(i65, 0)
guard_false(i68) ⇒ else [i65]
< call inner >
< invoke handler >
< capture continuation >
< call continuation >
< update loop variable >
i70 = int_sub(i65, 1)
jump loop1(i70)

(b) Optimized loop

Fig. 18. Example for one-shot continuation capture with tail resumption.

A.4.3 Examples in other languages. For brevity, we only showed the examples in Section 6 for Eff.
In this appendix, we show the variants for the other two languages.

Continuation Capture (zero-shot). The example in all three languages (Eff on the left, Effekt in
the middle, and Koka on the right) here is:

effect Exc : unit

let inner () = perform Exc

let outer () = handle
inner ()

with
| effect Exc k → ()
| x → x

let rec loop n =
if n ≥ 0
then (outer ();

loop (n - 1))

interface Exc {
def exc(): Unit

}

def inner() = {
forceNonpure()
do exc()

}

def outer() = try {
inner()

} with Exc {
def exc() = ()

}

def run(n: Int): Int = {
if (n > 0) {

outer()
run(n - 1)

} else { 0 }
}

effect exc
ctl exc(): unit

noinline fun inner(): exc unit
exc()

fun outer()
with handler

return(x) x
ctl exc()

()
inner()

fun run(n: int)
if n ≥ 0

then
outer()
run(n - 1)

else 0

which generate the following optimized traces (again in the same order for the languages):

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:44 Gaißert, Bolz-Tereick, and Brachthäuser

loop1(i53):
guard_not_invalidated
⇒ loop [i53]

< repetition bookkeeping >
i55 = int_eq(i53, 0)
guard_false(i55)
⇒ then [i53]

i56 = int_lt(i53, 0)
guard_false(i56)
⇒ else [i53]

< call outer >
< install handler >
< invoking body >
< invoke handler >
< capture continuation >
< returning >
< repetition bookkeeping >
i58 = int_sub(i53, 1)
jump loop1(i58)

loop1(i31):
guard_not_invalidated
⇒ loop [i31]

< repetition bookkeeping >

i33 = int_gt(i31, 0)
guard_true(i33)
⇒ else [i31]

< call outer >
< installing the handler >
< call inner >
< invoke exc capability >
< capture the continuation >
< returning >
< repetition bookkeeping >
i35 = int_sub(i31, 1)
jump loop1(i35)

loop1(i49, p52):
guard_not_invalidated
⇒ loop [i49]

< called outer >
< install handler, modify evv >
p54 = getfield_gc(p52, tag)
guard_value(p54, ConstPtr(ptr86))
⇒ with handler [i49]

< set evv, install prompt >
< invoke body, get evidence >
guard_nonnull_class(p52, Data__0)
⇒ with handler [i49]

< invoke handler >
< capture the continuation >
< restore evidence >
< repetition bookkeeping >
i57 = int_sub(i49, 1)
i59 = int_ge(i57, 0)
guard_true(i59) ⇒ else [i49]
jump loop1(i57, p52)

Continuation Capture (one-shot and tail). The example in all three languages (Eff on the left,
Effekt in the middle, and Koka on the right) here is:

effect Fun : unit

let inner () = perform Fun

let rec loop n =
if n ≥ 0
then (inner ();

loop (n - 1))
else ()

let outer n = handle
loop n

with
| effect Fun k → k ()
| x → x

interface Fun {
def fn(): Unit

}

def inner() = {
forceNonpure()
do fn()

}

def loop(n: Int): Unit / Fun
= {

if (n > 0) {
inner()
loop(n - 1)

} else { () }
}

def outer(n: Int) = try {
loop(n)

} with Fun {
def fn() = resume(())

}

effect func
ctl func(): unit

fun inner(): func unit
func()

fun loop(n: int): <div,func> unit
if n > 0

then
inner()
loop(n - 1)

else ()

fun outer(n: int)
with handler

return(x) x
ctl func()

resume(())
loop(n)

which generate the following optimized traces (again in the same order for the languages):

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:45

loop1(i65):
guard_not_invalidated
⇒ loop [i65]

< check loop conditioon >
i67 = int_eq(i65, 0)
guard_false(i67)
⇒ then [i65]

i68 = int_lt(i65, 0)
guard_false(i68)
⇒ else [i65]

< call inner >
< invoke handler >
< capture continuation >
< call continuation >
< update loop variable >
i70 = int_sub(i65, 1)
jump loop1(i70)

loop1(i48):
guard_not_invalidated
⇒ loop [i48]

< check loop condition >

i50 = int_gt(i48, 0)
guard_true(i50)
⇒ else [i48]

< call inner >
< invoke handler >
< capture continuation >
< call continuation >
< update loop variable >
i66 = int_sub(i48, 1)
jump loop1(i66s)

loop1(i69):
guard_not_invalidated
⇒ loop [i69]

< invoke handler >
< capture continuation >
< call continuation >
< restore evidence >
< update loop variable >
i75 = int_sub(i69, 1)
< check loop condition >
i55 = int_gt(i75, 0)
guard_true(i77)
⇒ else [i69]

jump loop1(i75)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:46 Gaißert, Bolz-Tereick, and Brachthäuser

A.5 Optimizing the dynamic dispatch
The aspect that we did not discuss in the previous subsections is getting rid of the dynamic dispatch.
When the JIT traces the call to an effect operation, it traces directly into the implementation used in
this instance, effectively inlining it. By inserting a guard, it ensures the correctness of the generated
code. While the lookup itself varies, in all three source languages the handler is called by invoking
a particular method on a handler object. For a method invocation, our interpreter implementation
executes the following RPython code:

recv = env.get_codata(op.receiver)
vtable = promote(recv.vtable)
target = vtable.get_target(op.tag, primitives)

js = [len(a) for a in op.args.regs]
env.setfrom_codata(recv, js, program)

return jump_to(target, . . .)

In our interpreter, we marked the registers of our interpreter env as virtualized. As a result, recv
will already be in a SSA register if possible, and thus likely end up in a machine register. We then
check the vtable and promote it, which inserts a guard checking for equality against the value we
observed during trace generation. All entries in the vtable are immutable, and thus also determined
by the vtable, so the lookup for target is no longer needed, because target is a known constant.
We then restore the environment from the closure value recv. Finally, we use jump_to to execute
a (known) jump. In the trace, this will not generate any code. Instead, we directly continue with
the implementation of the concrete handler.

If we have multiple handler implementations used in one code location, i.e., in the same loop and
same instruction, this can still be optimized. When the guard on vtable fails too often, we trace
more code paths from this guard, effectively building an inline cache of vtables. This, however, will
duplicate the rest of the loop resp. bridge, which is a well-known problem for tracing JITs [Gal
et al. 2009]. Note that the number of different handler implementations is bounded statically by the
number of handler definitions in the source program.

A.6 All benchmarking results for the ablation study
Figure 19 shows all timings for the ablation study.

A.7 Benchmarking results on M1
The original submission contained the benchmarking results measured on an Apple M1 running
macOS 14.1 using a Darwin 23.1.0 kernel. To allow for direct comparisons with the original
submission for the changes introduced since, and since they are easily available to us, we include
measurements on this machine here in Figures 20, 21a and 21b. They were run on a quiet system.
The results are faster overall, and there are some differences, like the Koka C backend being much
faster, which might also be due to using clang4 instead of gcc5 for compatibility reasons. In spite of
this, the conclusions made in this paper are the same for those results.

Received 2025-03-26; accepted 2025-08-12

4https://clang.llvm.org
5https://gcc.gnu.org

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

https://clang.llvm.org
https://gcc.gnu.org

Tracing Just-in-Time Compilation for Effects and Handlers 307:47

Eff JIT no 4.1.1 no 4.1.2 no 4.1.3 no 4.1.4 more 4.1.4 none
countdown 0.695 0.388 0.699 0.610 0.552 0.549 0.661
counter — — — — — — —
fibonacci-recursive 10.324 8.869 10.622 12.534 12.058 10.228 15.284
generator 0.504 0.495 0.485 0.625 0.473 0.616 0.569
handler-sieve 5.301 5.607 5.442 7.051 5.469 5.583 6.215
iterator 0.150 0.109 0.155 0.108 2.100 0.110 2.707
multiple-handlers 0.963 1.975 1.005 1.103 4.470 0.557 6.030
nqueens 0.900 0.870 0.863 1.065 1.446 1.471 1.650
parsing-dollars 0.532 0.354 0.540 0.646 6.525 0.540 7.838
product-early 0.818 0.815 0.820 1.193 0.810 0.838 1.159
resume-nontail 0.206 0.205 0.205 0.255 0.197 0.206 0.237
startup 0.005 0.005 0.005 0.005 0.005 0.005 0.005
to-outermost-handler — — — — — — —
tree-explore 0.551 0.557 0.525 0.741 0.500 0.754 0.670
triples 0.315 0.309 0.296 0.349 0.337 0.346 0.351
unused-handlers 4.875 3.793 5.110 3.833 3.636 3.913 5.064
geomean slowdown 1.000 0.930 1.000 1.111 1.610 0.991 1.967
Effekt JIT no 4.1.1 no 4.1.2 no 4.1.3 no 4.1.4 more 4.1.4 none
countdown 0.257 0.258 0.261 0.257 0.258 0.262 0.289
counter — — — — — — —
fibonacci-recursive 8.399 7.774 8.487 9.875 9.065 9.547 11.076
generator 0.754 0.830 0.763 1.060 0.772 0.918 1.016
handler-sieve 4.696 5.038 4.872 7.730 4.729 5.073 7.375
iterator 0.022 0.025 0.022 0.022 0.806 0.031 0.975
multiple-handlers 0.891 1.518 0.901 1.020 3.670 0.477 3.950
nqueens 1.465 1.523 1.521 1.841 1.355 1.085 1.753
parsing-dollars 0.520 0.521 0.506 0.524 6.028 0.543 5.960
product-early 0.516 0.520 0.517 0.684 0.510 0.505 0.679
resume-nontail 0.180 0.180 0.179 0.230 0.292 0.178 0.391
startup 0.005 0.005 0.005 0.005 0.005 0.005 0.005
to-outermost-handler 2.375 1.443 2.483 1.455 1.422 1.414 2.358
tree-explore 0.378 0.356 0.369 0.468 0.398 0.443 0.547
triples 0.163 0.156 0.152 0.188 0.209 0.208 0.239
unused-handlers 1.544 0.260 1.557 0.259 0.279 0.259 1.740
geomean slowdown 1.000 0.899 1.004 1.000 1.497 0.871 2.076
Koka JIT no 4.1.1 no 4.1.2 no 4.1.3 no 4.1.4 more 4.1.4 none
countdown 0.351 0.355 0.367 0.368 3.617 0.368 3.639
counter 0.417 0.430 0.415 0.414 2.079 0.442 2.104
fibonacci-recursive 4.688 5.006 4.399 5.671 6.140 6.528 4.616
generator 0.756 0.781 0.767 0.824 1.316 0.879 1.449
handler-sieve 5.119 5.207 5.267 8.099 5.362 5.494 8.573
iterator 0.275 0.261 0.275 0.274 0.263 0.260 0.272
multiple-handlers 1.122 1.080 1.112 1.466 1.153 1.125 1.433
nqueens 0.934 0.935 0.970 1.116 1.128 1.488 1.316
parsing-dollars 0.771 0.724 0.686 0.763 6.810 0.690 8.701
product-early 0.776 0.766 0.778 0.912 0.751 0.769 0.927
resume-nontail 0.429 0.435 0.430 0.478 0.737 0.440 0.958
startup 0.239 0.246 0.238 0.250 0.252 0.235 0.245
to-outermost-handler 0.777 0.766 0.769 0.807 4.014 0.750 4.083
tree-explore 0.662 0.624 0.650 0.766 0.719 0.942 0.944
triples 0.755 0.780 0.764 0.866 0.937 0.865 1.076
unused-handlers 0.353 0.352 0.352 0.367 3.596 0.361 3.518
geomean slowdown 1.000 0.999 0.994 1.125 2.114 1.094 2.366

Fig. 19. Runtimes of the benchmarks on jit with different optimizations disabled or changed, on x86_64. Time
in seconds. Fastest in bold. ≡ marks stack overflows, and — unimplemented benchmarks.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

307:48 Gaißert, Bolz-Tereick, and Brachthäuser

Eff Effekt Koka
JIT Ocaml Ocaml* JIT LLVM JS ML JIT C JS

countdown 0.196 8.109 0.128 0.437 1.017 0.893 0.066 0.239 3.228 0.837
counter — — — — — — — 0.317 1.970 0.545
fibonacci-recursive 6.195 40.663 1.434 5.307 1.650 17.889 2.104 3.259 1.301 3.513
generator 0.348 2.472 2.018 0.548 4.520 3.863 — 0.508 50.532 13.917
handler-sieve 2.376 25.293 8.326 2.067 0.379 2.291 ✗ 2.121 3.837 ≡
iterator 0.060 2.972 1.015 0.019 0.228 0.245 0.191 0.188 0.343 0.402
multiple-handlers 1.208 10.205 — 1.019 0.972 4.359 0.643 0.997 12.271 7.047
nqueens 0.500 ✗ 0.294 0.832 0.892 1.177 0.110 0.562 8.130 2.089
parsing-dollars 0.175 16.664 1.173 0.419 2.757 0.568 0.129 0.605 3.536 6.115
product-early 0.403 4.991 0.973 0.253 0.215 0.655 0.383 0.440 10.246 2.736
resume-nontail 0.122 1.492 0.229 0.109 0.127 OOM 0.112 0.287 9.102 ≡
startup 0.005 0.004 0.004 0.006 0.004 0.037 0.004 0.169 0.004 0.052
to-outermost-handler — — — 0.787 0.995 0.895 ✗ 0.587 3.992 1.300
tree-explore 0.323 1.206 0.180 0.215 0.362 0.893 0.177 0.393 0.824 0.571
triples 0.163 0.581 0.150 0.103 0.227 0.857 0.043 0.445 12.562 2.642
unused-handlers 2.129 > 90.000 — 0.438 0.994 0.896 ✗ 0.240 3.226 0.864
geomean slowdown 1.000 10.088 1.617 1.000 1.541 3.099 0.624 1.000 5.617 3.226

Fig. 20. Runtimes of the benchmarks on the different backends, on M1. Time in seconds. Fastest in bold. For
Eff, Ocaml is the plain-ocaml backend, Ocaml* is the version from the OOPSLA artifact. ≡ marks stack
overflows, — unimplemented benchmarks and ✗ failing compilations.

(a) direct style Effekt JS Lua Python
JIT V8 LuaJIT Lua CPython PyPy

bounce 0.408 0.213 0.810 7.177 8.686 0.251
list-tail 0.342 0.330 0.706 5.505 5.274 1.551
mandelbrot 0.138 0.075 0.045 0.295 0.636 0.119
nbody 0.124 0.059 0.036 0.753 1.102 0.152
permute 1.347 0.450 0.513 12.211 13.256 1.293
queens 2.051 0.400 0.471 7.675 6.705 0.835
sieve 0.774 0.288 0.170 2.979 5.568 0.402
storage 0.462 0.196 0.860 3.105 3.022 1.114
towers 1.161 0.662 0.733 18.310 19.947 2.503
geomean slowdown 1.000 0.451 0.591 7.182 8.899 1.135

(b) control effects Eff Effekt Koka JS OCaml 5 Python
JIT JIT JIT V8 OCaml 5 CPython PyPy

countdown 0.196 0.437 0.239 6.751 10.104 65.505 7.361
fibonacci-recursive 6.195 5.307 3.259 2.433 1.433 30.444 6.668
generator 0.348 0.548 0.508 23.769 1.429 23.859 8.029
handler-sieve 2.376 2.067 2.121 ≡ 8.101 ≡ > 90.000
iterator 0.060 0.019 0.188 0.740 1.081 1.852 0.196
multiple-handlers 1.208 1.019 0.997 8.029 — 11.368 1.087
parsing-dollars 0.175 0.419 0.605 6.177 6.450 45.294 1.481
product-early 0.403 0.253 0.440 6.620 0.106 ≡ 4.395
resume-nontail 0.122 0.109 0.287 — 0.486 — —
startup 0.005 0.006 0.169 0.035 0.004 0.016 0.063
geomean slowdown 1.002 1.000 1.896 11.042 3.448 27.493 6.238

Fig. 21. Runtimes of external benchmarks, on M1. Time in seconds. Lower is better, fastest in bold. ≡ marks
stack overflows and — unimplemented benchmarks. Geometric mean slowdown is relative to Effekt JIT.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

Tracing Just-in-Time Compilation for Effects and Handlers 307:49

Eff JIT no 4.1.1 no 4.1.2 no 4.1.3 no 4.1.4 more 4.1.4 none
countdown 0.196 0.196 0.356 0.325 0.294 0.294 0.356
counter — — — — — — —
fibonacci-recursive 6.195 6.196 7.303 9.256 7.735 7.528 9.597
generator 0.348 0.348 0.340 0.441 0.332 0.395 0.414
handler-sieve 2.376 2.378 2.273 3.051 2.313 2.379 2.836
iterator 0.060 0.060 0.089 0.064 1.069 0.064 1.244
multiple-handlers 1.208 1.208 0.809 0.903 2.521 0.582 3.234
nqueens 0.500 0.500 0.513 0.638 0.880 0.866 1.364
parsing-dollars 0.175 0.175 0.216 0.258 3.226 0.217 3.876
product-early 0.403 0.409 0.414 0.694 0.412 0.408 0.671
resume-nontail 0.122 0.122 0.128 0.149 0.125 0.132 0.146
startup 0.005 0.005 0.010 0.010 0.010 0.010 0.010
to-outermost-handler — — — — — — —
tree-explore 0.323 0.323 0.323 0.464 0.310 0.463 0.428
triples 0.163 0.163 0.169 0.195 0.210 0.212 0.225
unused-handlers 2.129 2.129 2.953 2.375 2.134 2.267 2.925
geomean slowdown 1.000 1.001 1.147 1.307 1.831 1.167 2.302
Effekt JIT no 4.1.1 no 4.1.2 no 4.1.3 no 4.1.4 more 4.1.4 none
countdown 0.437 0.437 0.432 0.432 0.436 0.432 0.435
counter — — — — — — —
fibonacci-recursive 5.307 5.307 6.154 8.107 6.384 6.769 7.841
generator 0.548 0.549 0.552 0.722 0.543 0.607 0.706
handler-sieve 2.067 2.064 1.993 3.674 2.002 2.102 3.573
iterator 0.019 0.019 0.024 0.024 0.541 0.024 0.627
multiple-handlers 1.019 1.019 0.744 0.842 2.254 0.529 2.703
nqueens 0.832 0.832 0.830 1.100 0.864 0.616 1.114
parsing-dollars 0.419 0.416 0.092 0.092 3.294 0.093 3.817
product-early 0.253 0.253 0.257 0.355 0.258 0.257 0.348
resume-nontail 0.109 0.109 0.115 0.133 0.187 0.116 0.232
startup 0.006 0.006 0.010 0.010 0.010 0.010 0.010
to-outermost-handler 0.787 0.787 1.436 0.791 0.791 0.791 1.398
tree-explore 0.215 0.215 0.233 0.311 0.264 0.276 0.346
triples 0.103 0.103 0.106 0.125 0.147 0.132 0.164
unused-handlers 0.438 0.439 0.728 0.433 0.437 0.433 0.758
geomean slowdown 1.000 1.000 1.021 1.118 1.708 0.948 2.199
Koka JIT no 4.1.1 no 4.1.2 no 4.1.3 no 4.1.4 more 4.1.4 none
countdown 0.239 0.239 0.243 0.243 2.041 0.244 2.264
counter 0.317 0.318 0.321 0.320 1.222 0.321 1.344
fibonacci-recursive 3.259 3.257 3.027 3.276 3.715 4.232 2.848
generator 0.508 0.503 0.497 0.544 0.860 0.559 1.003
handler-sieve 2.121 2.116 2.107 3.259 2.085 2.091 3.441
iterator 0.188 0.188 0.192 0.192 0.193 0.192 0.194
multiple-handlers 0.997 0.997 1.001 1.164 1.005 1.008 1.159
nqueens 0.562 0.563 0.584 0.659 0.730 0.894 0.826
parsing-dollars 0.605 0.602 0.605 0.608 4.237 0.605 5.868
product-early 0.440 0.422 0.424 0.597 0.432 0.425 0.547
resume-nontail 0.287 0.287 0.292 0.313 0.505 0.296 0.637
startup 0.169 0.169 0.173 0.173 0.174 0.173 0.175
to-outermost-handler 0.587 0.587 0.590 0.591 2.224 0.591 2.451
tree-explore 0.393 0.393 0.431 0.488 0.477 0.542 0.581
triples 0.445 0.444 0.455 0.525 0.595 0.517 0.704
unused-handlers 0.240 0.240 0.245 0.245 2.050 0.245 2.263
geomean slowdown 1.000 0.996 1.008 1.112 1.978 1.091 2.272

Fig. 22. Runtimes of the benchmarks on jit with different optimizations disabled or changed, on M1. Time in
seconds. Fastest in bold. ≡ marks stack overflows, and — unimplemented benchmarks.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 307. Publication date: October 2025.

	Abstract
	1 Introduction
	2 JITting Effects by Example
	2.1 Example: Push Streams with Effects and Handlers
	2.2 Runtime Intuition
	2.3 BC – Bytecode for Effect Handlers
	2.4 Tracing JIT for Effects and Handlers
	2.5 Section Conclusion

	3 The Bytecode Format BC
	3.1 Delimited Control
	3.2 Dynamic Binding
	3.3 Other Constructs
	3.4 Source Languages

	4 Implementation
	4.1 Implemented Optimizations
	4.2 Limitations

	5 Performance Evaluation
	5.1 Benchmark Descriptions
	5.2 Benchmarking Methodology
	5.3 Benchmark Results
	5.4 Influence of Optimizations

	6 Discussion
	6.1 Comparison with AOT (RQ 1)
	6.2 Advantages and Limitations (RQ 2)
	6.3 Optimizations (RQ 3)
	6.4 Variations of Effects (RQ 4)
	6.5 Baseline (RQ 5)
	6.6 Threats to Validity

	7 Related Work
	7.1 Abstract Machines for Control Operators
	7.2 Efficient AOT Compilation of Effect Handlers
	7.3 JIT Compilation of Control Effects

	8 Conclusion and Future Work
	9 Data-Availability Statement
	Acknowledgments
	References
	A Appendix
	A.1 Complete formal presentation of BC
	A.2 Benchmark descriptions
	A.3 Source Language translations in detail
	A.4 Detailed Traces for Discussion
	A.5 Optimizing the dynamic dispatch
	A.6 All benchmarking results for the ablation study
	A.7 Benchmarking results on M1

