
237

Ge�ing into the Flow

Towards Be�er Type Error Messages for Constraint-Based Type Inference

ISHAN BHANUKA, HKUST, Hong Kong, China
LIONEL PARREAUX, HKUST, Hong Kong, China
DAVID BINDER, University of Tübingen, Germany

JONATHAN IMMANUEL BRACHTHÄUSER, University of Tübingen, Germany

Creating good type error messages for constraint-based type inference systems is difficult. Typical type error

messages reflect implementation details of the underlying constraint-solving algorithms rather than the

specific factors leading to type mismatches. We propose using subtyping constraints that capture data flow to

classify and explain type errors. Our algorithm explains type errors as faulty data flows, which programmers

are already used to reasoning about, and illustrates these data flows as sequences of relevant program locations.

We show that our ideas and algorithm are not limited to languages with subtyping, as they can be readily

integrated with Hindley-Milner type inference. In addition to these core contributions, we present the results of

a user study to evaluate the quality of our messages compared to other implementations. While the quantitative

evaluation does not show that flow-based messages improve the localization or understanding of the causes

of type errors, the qualitative evaluation suggests a real need and demand for flow-based messages.

CCS Concepts: • Software and its engineering → General programming languages; • Theory of

computation → Program analysis; Type theory; • Human-centered computing → Human computer

interaction (HCI).

Additional Key Words and Phrases: type inference, error messages, subtyping, data flow, constraint solving

ACM Reference Format:

Ishan Bhanuka, Lionel Parreaux, David Binder, and Jonathan Immanuel Brachthäuser. 2023. Getting into the

Flow: Towards Better Type Error Messages for Constraint-Based Type Inference. Proc. ACM Program. Lang. 7,

OOPSLA2, Article 237 (October 2023), 29 pages. https://doi.org/10.1145/3622812

1 INTRODUCTION

Much academic research has gone into producing better type error messages for functional pro-
gramming languages, dating back at least to Wand [1986]. Yet, one would be none the wiser by
looking at the error messages produced by existing compilers, including those compilers designed
specifically with learning in mind, such as Helium [Heeren et al. 2003]. For example, consider the
following OCaml program1, where operator (^) stands for string concatenation:

4 let appInfo = ("My␣Application", 1.5)

5 let process (name , vers) = name ^ show_major (parse_version vers)

6 let main() = process appInfo

1We use OCaml syntax for all code examples because of its prevalence in error localization literature.

Authors’ addresses: Ishan Bhanuka, HKUST, Hong Kong, China; Lionel Parreaux, HKUST, Hong Kong, China; David

Binder, University of Tübingen, Tübingen, Germany; Jonathan Immanuel Brachthäuser, University of Tübingen, Tübingen,

Germany.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART237

https://doi.org/10.1145/3622812

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-7000-6534
HTTPS://ORCID.ORG/0000-0002-8805-0728
HTTPS://ORCID.ORG/0000-0003-1272-0972
HTTPS://ORCID.ORG/0000-0001-9128-0391
https://doi.org/10.1145/3622812
https://orcid.org/0000-0002-7000-6534
https://orcid.org/0000-0002-8805-0728
https://orcid.org/0000-0003-1272-0972
https://orcid.org/0000-0003-1272-0972
https://orcid.org/0000-0001-9128-0391
https://doi.org/10.1145/3622812

237:2 Bhanuka, Parreaux, Binder, and Brachthäuser

Here, we assume the following definitions imported from some library:

1 val show_major : string -> string

2 val parse_version : string -> string

This program contains a type error. Below is the error reported by the OCaml compiler (v. 4.14.0):

OCaml

l.6: let main() = process appInfo

Error: This expression has type string * float

but an expression was expected of type string * string

Type float is not compatible with type string

It is not immediately clear, just from looking at this report, what caused the problem and how to go
about fixing it, unless one is already familiar with the source code and has it fresh in their mind—
note that the definitions in our little program above could be very far apart in a real-world scenario.
The error seems to provide exactly as much information as the type inference engine had on hand
at the time it encountered a problem and little to no contextual information is provided, which
could have been helpful. Error reports produced by most other existing compilers for functional
programming languages are not significantly different than this.

1.1 Flow-Based Error Messages

How come the wealth of previous ideas for improving ML type errors has not yet permeated modern
compiler design practice? This could be for a number of reasons. Perhaps the previously-proposed
approaches were too difficult to implement or to integrate into existing type systems; or they were
too unreliable and their heuristics too difficult to tune; or perhaps the corresponding explanations
were not actually helpful to real programmers.

In this paper, we set out to start addressing these questions by:

• proposing a straightforward, heuristics-free approach to recording and reproducing the infor-
mation relevant to ML type errors in terms of data flows, a concept that we expect users can
get used to quickly, because it relates to how programs evaluate; and by

• performing a randomized quasi-experimental study to evaluate whether our approach does
help programmers understand the type errors found in actual ML programs. We compare the
error messages we produce to those generated by ocamlc and Helium [Heeren et al. 2003]2.

The approach we propose, which we dub HMℓ (to be read as “H-M-loc”), produces the error
message in Figure 1 when given the same program as above. This report adds several helpful bits of
context to the error. Most importantly, instead of displaying a single erroneous location, it presents,
in a logical order, each location involved in the erroneous data flow. This report illustrates the
flow of data from the right-hand-side component of the appInfo pair into the vers parameter
of function process , and the flow of this vers parameter into function parse_version , which is
imported from some library. Our type error is caused by this specific erroneous data flow.

Note that if the abbreviated report above is still not enough for the user to resolve the issue
at hand, a further detailed explanation can be obtained. HMℓ supports a verbose mode that lists
the entire sequence of locations involved in a type mismatch, including those locations that go
through nested type constructors. Verbose error messages can become very long and unwieldy.
A promising future direction for our work will be to enable interactive type error debugging in

2Unfortunately, bit-rot seems to have gotten the better of the vast majority of historical type error reporting systems from

academia, so we are only able to compare with these two.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:3

HMℓ

[ERROR] Type `float ` does not match `string `

 (float) comes from

| - l.4 let appInfo = ("My Application", 1.5)

| ^^^

| - l.5 let process (name , vers) =

| ^^^^

| - l.9 name ^ show_major (parse_version vers)

▼ ^^^^

 (string) comes from

- l.2 val parse_version : string -> string

^^^^^^

Fig. 1. Simple example of HMℓ error message.

integrated development environments (IDEs), whereby users will be able to explore the data flows
involved in a type error interactively.

1.2 Complex Type Errors

The above program is simplistic and the erroneous data flow is easy to understand. In more complex
scenarios, errors can arise from two types flowing into or from the same location, which we refer to
as confluence errors. Data flows are further complicated when types flow through constructors. Later
in the paper, we detail how we propose to handle these more advanced typing errors in our error
reporting system (Section 4). As an early example, consider the following linear algebra program:

1 let move (x, y) = (x / 2, y / 2)

2 let dist (x, y) = x *. x +. y *. y

3 let move_closer pos =

4 if dist pos < 25.0 then pos else move pos

The OCaml compiler gives the following error for this program, which again lacks context:

OCaml

File line 3, characters 59-62:

3 | let move_closer pos = if dist pos < 25.0 then pos else move pos

Error: This expression has type float * float

but an expression was expected of type int * int

Type float is not compatible with type int

On the other hand, Figure 2 shows HMℓ ’s verbose error report, where the flows of all values and
how they pass through constructors is precisely described:
This error report introduces new syntax that we explain below.

• The indented parts are those corresponding to nested constructor flows—here, the float value
does not immediately flow into an int position, but rather flows into the left-hand side of a
pair, which itself has its own flow. This nested flow is important to understand the entire
context of the error and is shown in the verbose error reports.

• The labels ?a, ?b, and ?c are placeholders for types. ?b is the label for the argument of the
move_closer function and it flows into two use sites. It is used as the argument to the dist

function which expects a pair. The left type argument of the pair is labelled ?a which flows

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

237:4 Bhanuka, Parreaux, Binder, and Brachthäuser

HMℓ

[ERROR] Type `float ` does not match `int`

 (float) comes from

▲ - lib. let (*.): float -> float -> float

| ^^^^^

| - l.2 let dist (x, y) = x *. x +. y *. y

| ^

|

 (?a) is assumed for

- l.2 let dist (x, y) = x *. x +. y *. y

^

 (?a * _) comes from

▲ - l.2 let dist (x, y) = x *. x +. y *. y

| ^^^^^^

| - l.4 if dist pos < 25.0 then pos else move pos

| ^^^

| - l.3 let movecloser pos =

| ^^^

|

 (?c) is assumed for

| - l.3 let movecloser pos =

| ^^^

| - l.4 if dist pos < 25.0 then pos else move pos

| ^^^

▼

 (?b * _) comes from

- l.1 let move (x, y) = (x / 2, y / 2)

^^^^^^

 (?b) is assumed for

| - l.1 let move (x, y) = (x / 2, y / 2)

| ^

| - l.1 let move (x, y) = (x / 2, y / 2)

| ^

▼

 (int) comes from

- lib. let (/): int -> int -> int

^^^

Fig. 2. Complex example of HMℓ error message.

into a location expecting a float . Label ?b is also used as the argument to the move function
which also expects a pair with the left type argument labelled as ?c. Type ?c flows into a
location expecting an int. The data flow, presented like this, shows how two incompatible
types are being unified causing a type error.

This program represents a more realistic example where composing different functions together
can lead to erroneous data flows.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:5

1.3 Contributions

Our new approach is based on a theory of type provenance tracking. A key observation is that
we have to treat type equality constraints g1 = g2 as asymmetric, since such type constraints are
read as information about a value flowing from a source where it has been introduced with type
g1 to a usage site where it will be used at type g2. This asymmetry suggest to look for inspiration
from constraint-based inference algorithms for subtyping constraints of the form g1 <: g2, which
are naturally asymmetric. In this paper, we use the algebraic subtyping approach and algorithms
developed by Dolan [2017]; Dolan and Mycroft [2017] and simplified by Parreaux [2020], and
combine it with the idea of Gast [2005] to use data flow for explaining error messages. While we
use subtype inference to improve the quality of error messages, our approach targets the familiar
type theory of Hindley, Damas and Milner as the user-facing type system.
Specifically, we make the following contributions:

• A classification system for unification errors based on data flow, where each unification error is
assigned a numeric level (Section 2). The classification allows us to speak about Level-= errors,
and to craft error messages specific for each level. We suggest that it is crucially important to
use different textual explanations when explaining type errors of different levels.

• A subtyping constraint solving algorithm which reports data flow-based error messages for
Level-0 errors, which is very close to the one used in algebraic subtyping but additionally
tracks the provenances of types and flows in the program (Section 3). This demonstrates an
observation of the algebraic subtyping community that it is easier to create helpful error
messages from a subtype-inference-based system rather than from a unification-based one.

• An equality-constraint solving algorithm which reports data-flow-based error messages for
Level-n errors (where = ≥ 1). This algorithm is close to unification-based algorithms, but also
tracks provenances of types and flows (Section 4).

• A user study to empirically evaluate our error messages and to help us guide further research
into improving their quality (Section 5). The experiment compares the effects ofHMℓ , ocamlc,
and Helium on programmers’ ability to understand and localize type errors. While the
quantitative evaluation does not show that HMℓ provides any measurable improvement
over the state-of-the-art, a qualitative analysis suggests the demand for flow-based errors in
situations with complex type errors.

We provide an implementation of HMℓ as an extension of Simple-sub [Parreaux 2020]. Our system
type checks a reasonable subset of OCaml features while providing high-quality error messages3.

2 CLASSIFYING TYPE ERRORS

Not all unification errors are created equal. By treating them as equal, compiler engineers pass up
an opportunity to improve the quality of the error messages that we can generate. Independent
of the constraint algorithm we use, eventually the type checker might come to a point where it
has discovered enough information to conclude that two incompatible types, such as Bool and
Int, should be equal, at which point it emits an error. Following this line of thought, we might
conclude there is only one essential kind of unification error, namely that two types are incompatible.
Accordingly, most type checkers only use one textual template to display these errors to the user.
The error messages might be enriched with additional information about the typing context in
which the error arose, or about the source code region for which it was generated, but the underlying
textual template often stays the same.

3Our implementation is permanently available on Zenodo [Bhanuka et al. 2023]. A web demo is available on the repository

which hosts the latest version of our implementation. The repository is hosted at github.com/hkust-taco/hmloc.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

https://github.com/hkust-taco/hmloc

237:6 Bhanuka, Parreaux, Binder, and Brachthäuser

In this section, we argue that this uniform view holds us back if we want to create great error
messages for the user. To improve error messages that arise from type unification, as a first step,
we realize that not all unification errors are the same and introduce a precise classification of
unification errors. Based on this classification, as a second step, it is then possible to craft a textual
error message for each kind of unification error, instead of using one fits-all template. As we will
see, we classify different constraint solving errors using the direction of data flow in the program.

2.1 Flow of Types

Let us assume that we typecheck the faulty expression not 1. Traditionally, one would generate a
type constraint expressing that Int (the type of the literal 1) has to be equal to Bool (the argument
type of the not function). However, we can observe that this information is directed and closely
corresponds to the data flow: not

Bool→Bool

1
Int

In analogy to the well-known concept of data flow, we argue that programmers can reason about
the flow of types to understand faulty programs. In the above example, we say that the argument
type Int flows into the parameter type Bool. It would be incorrect to generate a constraint for
this expression which says that Bool flows into Int. Most standard unification algorithms discard
this directionality information, since they make implicit use of the rule of symmetry to solve
constraints. In these algorithms, the type equality constraint g1 = g2 is considered equivalent to the
constraint g2 = g1. As a first technical insight, we thus recognize that we have to use non-symmetric
constraints if we want to preserve directionality information during constraint solving. Luckily,
there already is a ready-made notion for non-symmetric constraints: subtyping constraints g1 <: g2
which express that g1 has to be a subtype of g2. We will see that we can equivalently interpret
these subtyping constraints as expressing that a value of type g1 flows into a context which expects
a value of type g2, and that this reading is independent of whether we consider a system with
subtyping or without.

2.2 Change of Direction

The flow of types provides us with a different explanation model for type errors. In our example
above, the flow was excessively short. In realistic programs, the distance between the point where a
type is introduced (like type Int) and the point where it collides with a different expected type (type
Bool in our example) can be arbitrarily large. Furthermore, type errors are not only introduced
when one type flows directly into another incompatible one, but also if two incompatible types
flow into a single location. This is the case in the following example, where both Int and Str flow
into the result type of the conditional expression:

if true then 5 else "hi"

We refer to these type errors as confluence errors. When type checking a program like the one
above, we would gather the two constraints Str <: Uret and Int <: Uret, where Uret is a unification
variable corresponding to the result of the conditional. While there is an obvious type error in the
program, just given the constraints we cannot immediately derive an inconsistency. In order to
do so, we would have to invoke the rule of symmetry. As a second technical insight, we observe
that invoking symmetry corresponds to a change of direction in the flow of types: Str <: Uret :> Int
following the type flow from Str to Int, we can notice that it reverses direction once. Generalizing
this observation, we present the following classification of type errors.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:7

let x = 2;

let y = if x then true else false;
Int UG Bool

(a) Program with Level-0 error.

let f x = (not x, x + 1); UG

Int

Bool

let x = 2

let y = if true then x else "x"

Int

Str

U~

(b) Two programs with different Level-1 errors.

let g x = (not x

, if true then x else 5)

UG

Int

Bool

Vret

(c) Program with Level-2 error.
Fig. 3. Examples of faulty programs and their corresponding constraint graphs.

Definition 2.1. In a Level-= unification error, the derivation of the contradiction has the form
of a chain of subtyping constraints g <:> . . . <:> g ′ (with g ≠ g ′ and <:> denoting either <: or
:>), where the direction of the subtyping constraints changes = times. Each change of direction
corresponds to a reversal of the data flow which has to be explained to the user. While the rule
of symmetry allows HM type inference algorithms to ignore this information about data flow,
retaining it is important to properly explain the cause of the type error.

To see why this classification is useful, in the remainder of this section, we will consider concrete
examples containing errors of various levels in Figure 3 and the corresponding error messages that
we generate.

2.2.1 Level-0 Errors. The snippet in Figure 3a contains a Level-0 error. In this example, we have to
introduce one unification variable UG for the let-bound program variable G , and two constraints
Int <: UG and UG <: Bool. The first constraint expresses that the type Int, introduced by the literal 2,
flows into the variable G , while the second constraint expresses that the type of the variable G flows
into the condition of the if-then-else expression which expects a boolean. These constraints are
presented in the corresponding graph as arrows, with the direction of the arrow corresponding to
the flow of data through the program. From these two constraints we can deduce the inconsistency
Int <: Bool without having to reverse the data flow in the constraints. This means that we can
directly explain the error as the flow from one type to the other as shown in Figure 4. Level-0 errors
allow for a good textual explanation in error messages, since we can point to a location in the
program where a value of a certain type was introduced, follow it through intermediate bindings
and point to a position in the code where a different type was expected. Programs containing such
Level-0 errors should always be rejected by a typechecker, since executing such programs would
result in type mismatch errors at runtime (i.e., non-value terms getting stuck and not reducing
further). Such programs are therefore rejected by both systems which support subtyping and
systems which do not.

2.2.2 Level-1 Errors. In Figure 3b we have two snippets which both exhibit Level-1 errors. In the
first of these snippets we have an if-then-else expression with incompatible cases for the if and else

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

237:8 Bhanuka, Parreaux, Binder, and Brachthäuser

HMℓ

[ERROR] Type `int` does not match `bool `

 (int) comes from

| - l.1 let x = 2;

▼ ^

 (bool) comes from

- l.2 let y x = if x then true else false

^

Fig. 4. Level-0 error.

HMℓ

[ERROR] Type `int` does not match `string `

(int) ---> (?a) <--- (string)

 (int) comes from

| - l.1 let x = 2

| ^

| - l.2 let y = if true then x else "x"

▼ ^

 (?a) is assumed here

▲ - l.2 let y = if true then x else "x"

| ^^^^^^^^^^^^^^^^^^^^^^^

 (string) comes from

- l.2 let y = if true then x else "x"

^^^

Fig. 5. Level-1 “confluence” error with convergent flows

branch. During constraint generation we would generate a unification variable Uret for the return
type of the if-then-else expression, and two constraints: The constraint Int <: Uret for the if branch
and the constraint Str <: Uret for the else branch. But taken together, these constraints are only
contradictory if we reverse the data flow once in the chain Int <: Uret :> Str. Figure 5 shows the
error message.
In a system with subtyping and union and intersection types it would be possible to assign the

type Int⊔ Str to the expression. This shows that it is not strictly necessary to reject this expression,
since the evaluation of this expression cannot lead to type unsoundness in itself, as long as its
context can handle both an integer and a string.
The second example in Figure 3b exhibits a different Level-1 error. Here we have to generate a

unification variable UG for the lambda-bound variable G , and two constraints for the two different
uses of G in either side of the tuple. The error is presented in Figure 6. A system with support for
subtyping could assign the type (Int ⊓ Bool) → (Bool, Int) to the expression, i.e., a function which
can only be called with a value which can act as both an integer and a boolean.

2.2.3 Level-2 Errors. If we combine the two snippets from Figure 3b we obtain the example from
Figure 3c which exhibits a Level-2 error. Here two unification variables, UG and Vret have to be
generated, together with three constraints, and we have to change the direction of data flow twice

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:9

HMℓ

[ERROR] Type `int` does not match `bool `

(int) <--- (?a) ---> (bool)

 (int) comes from

▲ - lib. let (+): int -> int -> int

| ^^^

| - l.1 let f x = (not x , x + 1)

| ^

 (?a) is assumed here

| - l.1 let f x = (not x , x + 1)

| ^

| - l.1 let f x = (not x , x + 1)

▼ ^

 (bool) comes from

- lib. let not: bool -> bool

^^^^

Fig. 6. Level-1 error with divergent flows.

to obtain the inconsistency between Bool and Int. We conjecture that these kind of errors will
already be quite rare in practice, even more so for errors of even higher levels, and even for a human
it is no longer clear how the best error message should look like in this case. But the algorithm that
we present is still able to provide an explanation, mentions all the essential information, and is
much more informative than what other implementations provide. We show the error message for
this example in Figure 7.

2.3 Reporting Different Levels

How do different type inference algorithms deal with these different errors?
Algebraic subtyping algorithms like MLsub usually only report Level-0 errors, and not any of

the higher-level-errors (= > 0), as these are not considered errors in this typing discipline. This is
why it has been remarked, in the subtyping literature, that it should be easier to generate good
error messages for a system based on subtyping—the error messages only have to explain a linear
and obviously problematic data flow of information through the program.

Standard unification algorithms, on the other hand, have to account for Level-= errors for arbitrary
=, since symmetry is always valid for equality constraints. However, since these algorithms usually
do not track the reversal of the direction of data flow in the constraint solving process, the same
textual explanation is used for all unification errors, regardless of their level.

Our classification now allows us to design detailed and specific error messages for both systems
with and without subtyping. If we have a system with subtyping, we only recognize Level-0 errors
as proper errors, and display and explain them accordingly. We describe how to do this in Section 3.
If, on the other hand, we are interested in a system which recognizes the same errors as a standard
unification algorithm, then we have to recognize and explain errors for all levels. In Section 4, we
extend the algorithm from Section 3 to emulate a standard unification algorithm, and recognize
errors for all the levels. However unlike standard unification algorithm, we keep track of when the
direction of data flow is reversed and report the full data flow for an error.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

237:10 Bhanuka, Parreaux, Binder, and Brachthäuser

HMℓ

[ERROR] Type `bool ` does not match `int`

(bool) <--- (?a) ---> (?b) <--- (int)

 (bool) comes from

▲ - lib. let not: bool -> bool

| ^^^^

| - l.1 let g x = (not x

| ^

 (?a) is assumed here

| - l.1 let g x = (not x

| ^

| - l.2 , if true then x else 5)

▼ ^

 (?b) is assumed here

▲ - l.2 , if true then x else 5)

| ^^^^^^^^^^^^^^^^^^^^^

 (int) comes from

- l.2 , if true then x else 5)

^

Fig. 7. Level-2 error.

3 FORMALIZATION

In this section, we make the intuitions described in the previous sections formally precise. There
are two important properties of type inference in ML-style languages we omit in this section:
let-generalization and the occurs-check. We expect that both features will integrate well with the
approach we have described in this paper, but leave the details for future work.

3.1 Terms and Locations

Figure 8 defines the syntax of terms 4 . The presentation is fairly standard, but since we want to
track the flow of information through the program, we need a way to refer to the locations of
subexpressions within the program. For this reason, every subexpression and every binding site of
a variable is annotated with a program location ℓ . In this article, we do not commit to any actual
representation for program locations, but in our implementation we choose one based on line and
column number ranges. We also omit these locations in examples and explanations, or whenever
they are not necessary.

Syntax of Terms. Terms themselves consist of variables G , the unit constructor unit, integer liter-
als= and integer addition 4+4 . Booleans are constructedwith literals true and false, and eliminated
using the conditional if 4 then 4 else 4 . Functions are introduced using lambda abstraction _G.4 and
eliminated using function application 4 4 . Pairs are constructed using the pairing constructor [4, 4]
and deconstructed using projections c1 (4) and c2 (4). Sums are constructed using injections]1 (4) and
]2 (4), and deconstructed using the pattern matching construct case 4 of {]1 (G) ⇒ 4;]2 (G) ⇒ 4 }.

3.2 Types and Provenances

Where terms are annotated with locations, types are annotated with provenances (defined in
Figure 8). These provenances ? explain why a certain type is used at a specific point in the program,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:11

and they are recorded and recombined during the type inference process. Provenances are also
used to report errors; in that case they explain the flow of information through the program that led
to the mismatch of two types. A provenance records a linear path through the program, so we have
an operation · to concatenate two paths, and its unit n standing for the empty path. Provenance
concatenation is taken to be an associative operation where the absent provenance n is taken to be
the empty element. Therefore, for example, (?0 · ?1) · ?2 is the same as ?0 · (?1 · ?2) and is simply
written ?0 · ?1 · ?2. Similarly, n · ?0 · n · ?1 · n , is the same as ?0 · ?1. We also use locations ℓ in
provenances, to record specific points in the flow of information through the program. We will
introduce and motivate the remaining syntactic forms of provenances in Section 3.3.3, where they
are used in the constraint solving process.

Syntax of Types. The type forms are standard. We have type variables U , the unit type 1, and
primitive types Int and Bool. We have three binary type constructors: the function type →, the
product type ⊗ and the sum type ⊕. As mentioned above, these are all annotated with provenances
? . Just as with terms, we will sometimes omit these provenances in examples and explanations. In
order to show how the different parts of an annotated type correspond to different parts of the
information flow, we consider a very simple example.

Example 3.1. The inferred type of the term [5ℓ1 , unitℓ2]ℓ3 is Intℓ1 ⊗ℓ3 1
ℓ2 .

The above example shows that in the inferred type, the top-level provenance ℓ3 only contains
the information of the flow explaining the outermost type constructor _ ⊗ _. It does not contain
the information about the provenance of its arguments. These provenances are annotated in the
arguments to _ ⊗ _, namely Intℓ1 and 1

ℓ2 .

Location ℓ F program location

Term 4 F G ℓ | unitℓ | = ℓ | trueℓ | falseℓ | (if 4 then 4 else 4)ℓ | 4 +ℓ 4 | (_G ℓ . 4)ℓ | (4 4)ℓ

| [4, 4]ℓ | c1 (4)
ℓ | c2 (4)

ℓ |]1 (4)
ℓ |]2 (4)

ℓ | case 4 of {]1 (G
ℓ) ⇒ 4;]2 (G

ℓ) ⇒ 4 }ℓ

Provenance ? F ? · ? | n | ℓ | ⟨?⟩→! | ⟨?⟩→' | ⟨?⟩⊕! | ⟨?⟩⊕' | ⟨?⟩⊗! | ⟨?⟩⊗'

Type g, X F U? | 1? | Int? | Bool? | g →? g | g ⊕? g | g ⊗? g

Constraint & F g <: g

Context Γ F n | Γ · (G : U)

State f F { bounds : g <: U <: g, errors : ? }

Fig. 8. Syntax of terms and types.

3.3 Type Inference

Our type inference algorithm is an extension of a particular implementation of algebraic subtyping,
due to Parreaux [2020]. For readers who want to grasp the full extent of the algebraic subtyping
technique and the associated proofs of correctness, we suggest referring to the relevant literature
[Dolan 2017; Dolan and Mycroft 2017]. Note that locations and provenances do not affect type
inference; in the algorithm presented in the following sections, it is easy to see that erasing all
mentions of locations and type provenance tracking from our algorithm results in the algorithm
by Parreaux. Since algebraic subtyping accepts strictly more programs than Hindley-Milner type
inference, it follows that all programs rejected by the algorithm in this section are also rejected by
Hindley-Milner. However, programs which only exhibit level-n errors (with = ≥ 1) are accepted

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

237:12 Bhanuka, Parreaux, Binder, and Brachthäuser

by the algorithm in this section, but rejected by Hindley-Milner type inference. Since the goal of
our approach is to improve the quality of error messages, and not to change the set of accepted
programs, we add an additional phase described in Section 4 so that the same programs are accepted
by our algorithm and the standard unification based algorithms.

The type inference algorithm consists of three parts: The algorithmic inference rules, discussed
in Section 3.3.1, the constraint solving algorithm, discussed in Section 3.3.2, and the computation
of subconstraints, discussed in Section 3.3.3.

3.3.1 Algorithmic Inference Rules. The type inference judgement f p Γ ⊢ 4 : g p f ′ is specified in
Figure 9. It takes a type inference state f , a typing context Γ, and a term 4 , and returns a type g
along with a new type inference state f ′. This type inference state consists of the lower and upper
bounds for each type variable, and a list of errors that were generated during type inference. To
focus on the essential aspects of a rule, we fade out the state f when it is only threaded through.
The top-level judgement ∅ p n ⊢ 4 : g p f , also written ⊢ 4 : g p f , tells us whether a term

4 is well-typed: if there exists a ? such that err? ∈ f , then we say that 4 is ill-typed and ? is a
type provenance chain highlighting one of its type collision errors; otherwise, we say that 4 is
well-typed.

We rely on the usual informal notion of freshness for type variables—U is “fresh” if it does not
appear anywhere in the previous values of f , nor in the previous parts of the premise of a typing
rule.

3.3.2 Constraint Solving Algorithm. The constraint solving algorithm is specified in Figure 10. The
type constraining function f p cons(&)� p f ′ takes a type inference state f , a constraint & , and a
set of current hypotheses � , and returns a new state f ′.

We introduce two helper functions ‘add-lb’ and ‘add-ub’ to add a type, respectively, to the upper
and lower bounds of a type variable in the type inference state. For e.g. add-ub(f0, U, ? · g?

′
) = f1

where f1 = f0 ∪ {U <: g? ·?
′
}. Similarly, we introduce helper functions ‘lb’ and ‘ub’ to look up

respectively the upper and lower bounds of a type variable in the type inference state.

C-Cache This rule allows to immediately solve a constraint if it has already been encountered in
the constraint solving process, and is therefore contained in the set of hypotheses � . This
is necessary to avoid divergence in the presence of recursive types.4 We define reset(g0, g1)
as the substitution, in (g0, g1), of all type provenances by n . This is used to ensure that type
provenances do not affect the memoization of the constraining function.

C-Refl A constraint between two equal types can be solved immediately. When we check for
equality of types, we do not care for provenances. For this reason, we apply the reset function
before we compare them.

C-Var-L (and similarly for C-Var-R) When we encounter a constraint U <:g between a unification
variable U and a type g (which is not a unification variable) we have to do two things. We
first add g to the set of upper bounds of U in the state f . Then we generate and solve one
additional constraint between g and all existing lower bounds for U in f .

C-Var-LR When we encounter a constraint U <:U ′ between two unification variables, we add U to
the lower bounds of U ′ and U ′ to the upper bounds of U before we generate the subconstraints
to verify that the bounds are still consistent.

C-Sub When the constraint we have to solve is complex, i.e. neither of the two types is a unification
variable, then we invoke the function sub in order to compute the subconstraints of the
constraint. If this function returns with a set of new constraints, we solve them in turn.

4Whether the language is meant to support recursive types or not is an orthogonal concern, and it is easy to add a so-called

“occurs check” to make sure recursive types are rejected, if needed.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:13

f p Γ ⊢ 4 : g p f

T-Unit

f p Γ ⊢ unitℓ : 1ℓ p f

T-Lit

f p Γ ⊢ = ℓ : Intℓ p f

T-Plus

f0 p Γ ⊢ 40 : g0 p f1 f1 p cons(g0 <: Int
ℓ) p f2

f2 p Γ ⊢ 41 : g1 p f3 f3 p cons(g1 <: Int
ℓ) p f4

f0 p Γ ⊢ 40 +
ℓ 41 : Int

ℓ
p f4

T-Var
f0 p Γ(G) = g p f1

f0 p Γ ⊢ G ℓ : g ℓ p f1
G ∈ dom(Γ)

T-Lam
U fresh f0 p Γ · (G : U) ⊢ 4 : g p f1

f0 p Γ ⊢ (_G ℓG . 4)ℓ : UℓG →ℓ g p f1

T-App

U fresh f0 p Γ ⊢ 40 : g0 p f1 f1 p Γ ⊢ 41 : g1 p f2 f2 p cons(g0 <: g1 → Uℓ) p f3

f0 p Γ ⊢ (40 41)
ℓ : Uℓ p f3

T-True

f p Γ ⊢ trueℓ : Boolℓ p f

T-False

f p Γ ⊢ falseℓ : Boolℓ p f

T-IfThenElse
U fresh

f0 p Γ ⊢ 41 : g1 p f1 f1 p Γ ⊢ 42 : g2 p f2 f2 p Γ ⊢ 43 : g3 p f3
f3 p cons(g1 <: Bool

ℓ) p f4 f4 p cons(g2 <: U
ℓ) p f5 f5 p cons(g3 <: U

ℓ) p f6

f0 p Γ ⊢ (if 41 then 42 else 43)
ℓ : Uℓ p f6

T-Prod
f0 p Γ ⊢ 40 : g0 p f1 f1 p Γ ⊢ 41 : g1 p f2

f0 p Γ ⊢ [40, 41]
ℓ : g0 ⊗

ℓ g1 p f2

T-Lproj

f0 p Γ ⊢ 4 : g p f1 U, V fresh

f1 p cons(g <: U
ℓ ⊗ℓ Vn) p f2

f0 p Γ ⊢ c1 (4)
ℓ : Uℓ p f2

T-Rproj

f0 p Γ ⊢ 4 : g p f1 U, V fresh

f1 p cons(g <: V
n ⊗ℓ Uℓ) p f2

f0 p Γ ⊢ c2 (4)
ℓ : Uℓ p f2

T-Linj

U fresh f0 p Γ ⊢ 4 : g p f1

f0 p Γ ⊢]1 (4)
ℓ : g ⊕ℓ Un p f1

T-Rinj

U fresh f0 p Γ ⊢ 4 : g p f1

f0 p Γ ⊢]2 (4)
ℓ : Un ⊕ℓ g p f1

T-Case
U, V,W fresh

f0 p Γ ⊢ 40 : g0 p f1 f1 p Γ · (G ℓG : UℓG) ⊢ 41 : g1 p f2 f2 p Γ · (~ℓ~ : Vℓ~) ⊢ 42 : g2 p f3
f3 p cons(g0 <: U

ℓG ⊕ℓ Vℓ~) p f4 f4 p cons(g1 <: W
ℓ) p f5 f5 p cons(g2 <: W

ℓ) p f6

f0 p Γ ⊢ case 40 of {]1 (G
ℓG) ⇒ 41;]2 (~

ℓ~) ⇒ 42 }
ℓ : W ℓ p f6

Fig. 9. Algorithmic type inference rules.

C-Error If the function sub returns with an error, the returned f ′ is populated with err? elements
containing the provenance chains ? corresponding to the error.

3.3.3 Computation of Subconstraints. The computation of subconstraints is defined in Figure 11.
The function sub(&) takes a constraint & as input, and either computes a new list of constraints to
be solved, or otherwise returns an error err? containing a provenance if the constraint cannot be

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

237:14 Bhanuka, Parreaux, Binder, and Brachthäuser

f p cons(&)� p f

C-Cache
reset(&) ∈ �

f p cons(&)� p f

C-Refl
reset(g0) = reset(g1)

f p cons(g0 <: g1)
�
p f

C-Var-LR
add-ub(f0, U, U

′?0 · ?1) = f1

add-lb(f1, U
′, ?1 · U

?0) = f2 f2 p cons([gU <: U ′?1 | g ′U ∈ lb(f0, U)])
� ∪ reset(U<:U ′)

p f3

f0 p cons(U
?0

<: U ′?1)� p f3

C-Var-L

add-ub(f0, U, g
?0 · ?1) = f1 f1 p cons([g

′
<: g?1 | g ′ ∈ lb(f0, U)])

� ∪ reset(U<:g)
p f2

f0 p cons(U
?0

<: g?1)� p f2

C-Var-R

add-lb(f0, U, ?0 · g
?1) = f1 f1 p cons([g

?0
<: g ′ | g ′ ∈ ub(f0, U)])

� ∪ reset(g<:U)
p f1

f0 p cons(g
?0

<: U?1)� p f2

C-Sub

sub(&) = & f0 p cons(&) p f1

f0 p cons(&) p f1

C-Error
sub(&) = err?

f p cons(&) p f0

f p cons(&)� p f

C-Nil

f p cons([]) p f

C-Cons

f0 p cons(&) p f1 f1 p cons(&) p f2

f0 p cons(& :: &) p f2

Fig. 10. Constraint solving algorithm.

solved. We return new subconstraints if the types in the constraint are either both function types,
both product types or both sum types. In that case, we also have to recombine the provenances of
the types which are involved in the constraint, in order to track how a data flow can be tracked
through a constructor. This is where the additional provenances which we introduced, but didn’t
explain, in Section 3.2 come into play. We write ⟨?⟩⊙

!
and ⟨?⟩⊙

'
where the L and R indicate if the

provenance comes from the left or right hand side of a constraint on a constructor type ⊙. We
use the notations g?0 · ?1 and ?0 · g

?1 as shorthands for g?0 ·?1 . In every other case, that is, if the
outermost types of the two sides of a subtyping constraint are not identical, the constraint is not
solvable.
When we compute the subconstraints of two function types, we use the function rev(?) on

provenances which yields a type provenance with the same contents, but in reverse order. Reversal
applies recursively, meaning that it also reverses the order of provenances nested inside constructors
like ⟨?⟩→! . The use of this function spells out a curious phenomenon: passing through a function
parameter reverses the direction of a type flow, switching from flowing into to flowing from, or
vice versa. To illustrate this subtlety, consider the following program annotated with the relevant
locations ℓ1..8:

let foo fℓ1 = let gℓ2 = fℓ3 in gℓ4 "hello"ℓ5

foo (fun xℓ6 -> xℓ7 + 1)ℓ8

The problematic flow here is ‘ℓ5 · ⟨ℓ4 · ℓ2 · ℓ3 · ℓ1 · ℓ8⟩
→
! · ℓ6 · ℓ7’. Here is how to understand it:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:15

The string literal at ℓ5 has type string; it flows into the parameter of function g at ℓ4
(hence the !, which denotes the left-hand-side of a function type, so we reverse the flow
direction); where g itself flows from let-bound identifier g at ℓ2; from parameter reference
f at ℓ3; from parameter f at ℓ1; from the argument function at ℓ8; and (leaving the
function type and reverting back to a forward flow) into parameter x at ℓ6; into reference
x at ℓ7; where type int is expected.

Notice how this flow starts as a normal forward flows but reverses to a backward one upon entering
the left-hand side of a function type before going back to a forward flow as the flow leaves the
function type. Naturally, the complete flow information described above is far too verbose to report
directly to users. We found that a good tradeoff (which we use in our tool) is to only report the
outer flow ‘ℓ5 · . . . · ℓ6 · ℓ7’ and reserve the full flow for the verbose mode and (in the future) for
interactive type error exploration and IDE integration.

sub(g00 ⊗
?0 g01 <: g10 ⊗

?1 g11) = [g00 · ⟨?0 · ?1⟩
⊗
! <: g10 , g01 · ⟨?0 · ?1⟩

⊗
' <: g11]

sub(g00 ⊕
?0 g01 <: g10 ⊕

?1 g11) = [g00 · ⟨?0 · ?1⟩
⊕
! <: g10 , g01 · ⟨?0 · ?1⟩

⊕
' <: g11]

sub(g00 →
?0 g01 <: g10 →

?1 g11) = [g10 · ⟨?1 · rev(?0)⟩
→
! <: g00 , g01 · ⟨?0 · ?1⟩

→
' <: g11]

sub(g
?0
1

<: g
?1
2
) = err?0 · ?1

Fig. 11. Subconstraining rules.

Finally, notice that all the type constructors used in this section are variant: product and sum
types are covariant in their components and functions are contravariant in their parameters and
covariant in their results. In a system with subtyping, it is always possible to separate the covariant
and contravariant uses of type parameters, so that this pervasive variance is generally feasible.
However, in ML languages like OCaml, some type constructors are defined as invariant, such
as mutable references. To handle these, we need a notion of non-directional unification, which is
studied in the next section.

4 TYPE CONFLUENCE ERRORS

The algorithm presented in Section 3 only recognizes and reports Level-0 errors. Now, we extend it
to also report Level-n errors for = ≥ 1, by tracking data flows described by constraints, as explained
in Section 2.1.

Provenance ? F ... | /

Relation •F <:? | :>? | ∼
⟨/ ⟩

⊗|⊕|→

! |'

Data flow / F g • g | / • g | g • /

Fig. 12. Extended syntax with unification.

Data flows. We extend the syntax from Figure 8 with the notion of data flows. A data flow Z is a

sequence of types related by either <:? , :>? , or ∼
⟨/ ⟩

⊗|⊕|→

! |' , and we abstract over these relations with
the symbol •. We already discussed in Section 2.1 that constraints represent data flows; we can
therefore embed constraints into data flows: constraint g?0 <: g?1 , for example, corresponds to data
flow g <:?0 ·?1 g .

If a data flow has the form g1 • . . . •g2, then we use the shorthand g1 _ g2 if we are only interested
in the two outermost types of the data flow. Unifying a data flow / = g1 _ g2 says that g1 and g2
must be equal, and the data flow for this unification is explained by the components of / . If the

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

237:16 Bhanuka, Parreaux, Binder, and Brachthäuser

types g1 and g2 are not equal, then we have to generate a detailed unification error from Z, which
we will explain in Section 4.2.

We introduce ∼ to relate arguments of constructor types. We also introduce nested data flows

⟨/ ⟩
⊗|⊕ |→

! |'
for arguments of constructor types. Consider the data flow g00 ∼⟨/ ⟩⊗

! g10, which has

the nested data flow / = g00 ⊗ g01 <: U <: g10 ⊗ g11. We say that the types g00 and g10 are the left
arguments of product types at the terminal ends of data flow / . A key intuition is that the types
don’t flow directly in / but are carried by the product types. Similarly, sum and function type
arguments have nested data flows too.

A data flow is valid for a given a type inference state if all the individual relations in it are valid.

A sub-typing relation is valid if it is contained in the state f , and the relation ∼
⟨/ ⟩⊙

! |' is valid if the
nested data flow is valid and terminated by the correct constructor types.

valid(/)f = valid(g • g ′)f ∀g, g ′ . (... g • g ′ ...) ∈ /

valid(g ∼⟨/ ⟩⊙
! g ′)f = valid(/)f where / = (g ⊙ _) _ (g ′ ⊙ _)

valid(g ∼⟨/ ⟩⊙
' g ′)f = valid(/)f where / = (_ ⊙ g) _ (_ ⊙ g ′)

valid(g <:? g ′)f = g <:? g ′ ∈ f

valid(g :>? g ′)f = g ′ <:rev(?) g ∈ f

4.1 Unification Algorithm

The unification algorithm is specified in Figure 13. We start with function uni(f)� , which takes
a type inference state f and recurses over its bounds through the unification function uni(/)�f ,
where / is a data flow and � is the current set of hypotheses. This function equates the first and
last types of a data flow and terminates with an error if they are not equal. A piece of global state
could be threaded through the inference rules describing this function to collect all incorrect data
flows; however, we omit this to keep the algorithm’s specification concise. It is enough to see that,
given a derivation of this function, we can gather all unification errors by collecting all uses of the
U-Error rule.

We say that type inference state f is saturated when for all U and U ′ we have U ∈ lb(f, U ′) ⇐⇒

U ′ ∈ ub(f, U). Helper function ‘saturate’ saturates its input state in the obvious way.

U-state This rule is the entry point for unification. We first saturate the type inference state.
Then, for each type variable U in state f , we unify it with its upper and lower bound types g .

U-Cache A unification is solved trivially if it is already cached. We use ‘reset’ to erase the
provenance of the types before looking up the cache, where reset(g, g ′) = (reset(g), reset(g ′)).
This cache is necessary for the same reason as the cache in Section 3.3.2, i.e., to prevent
divergence in the case of cyclic bounds. However, since unifying two types is a symmetric
operation, we now look up both subtyping directions in the cache (i.e., both reset(g, g ′) and
reset(g ′, g)).

U-Refl A unification between two types that are equal modulo their provenance is solved imme-
diately. We use reset to erase the provenance information before comparing the types.

U-Var-L This rule unifies type variable U with g . It produces a set of data flows from the the
upper and lower bounds of U to g . Since U is on the left of the relation, the new relations are
concatenated to the left of the existing data flow / . This preserves the left to right continuity
of the data flow.

U-Var-R This is similar to U-Var-L except the type variable U is on the right of the relation. So
the new relation gets concatenated on the right.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:17

U-Sub When the unification involves constructed types (product, sum and function types), we
invoke ctor-uni to compute sub-unifications for their type arguments. If the function cannot
equate the constructor types it returns an error.

U-Error If U-Sub returns an error for an incorrect data flow, this rule terminates the algorithm.
The actual algorithm can be implemented by threading through a state and collecting all
such errors before reporting them.

uni(f)�

U-State
f ′

= saturate(f)

uni([g <:? U | ∀g <:? U ∈ lb(f ′, U)])�
f ′

uni([U <:? g | ∀U <:? g ∈ ub(f ′, U)])�
f ′

uni(f)�
uni(/)�f

U-Nil

uni([])�f

U-Cons
uni(/)�f uni(/)�f

uni(/ :: /)�f

uni(/)�f

U-Cache
{reset(g, g ′), reset(g ′, g) } ∩� ≠ ∅

uni(g _ g ′)�f

U-Refl
reset(g) = reset(g ′)

uni(g _ g ′)�f

U-Var-L

uni([g ′ <:? U _ g | g ′? ∈ lb(f, U)])
� ∪ reset(U,g)
f uni([g ′ :>rev(?) U _ g | g ′? ∈ ub(f, U)])

� ∪ reset(U,g)
f

uni(U _ g)�f

U-Var-R

uni([g _ U :>rev(?) g ′ | g ′? ∈ lb(f, U)])
� ∪ reset(U,g)
f uni([g _ U <:? g ′ | g ′? ∈ ub(f, U)])

� ∪ reset(U,g)
f

uni(g _ U)�f

U-Sub

ctor-uni(g _ g ′)�f = / uni(/)
� ∪ reset(g,g ′)
f

uni(g _ g ′)�f

U-Error
ctor-uni(/)�f = err /

uni(/)�f

ctor-uni(/)�f = [g00 ∼
⟨/ ⟩⊗

! g10 , g01 ∼
⟨/ ⟩⊗

' g11] where / = g00 ⊗ g01 _ g10 ⊗ g11

ctor-uni(/)�f = [g00 ∼
⟨/ ⟩⊕

! g10 , g01 ∼
⟨/ ⟩⊕

' g11] where / = g00 ⊕ g01 _ g10 ⊕ g11

ctor-uni(/)�f = [g00 ∼
⟨/ ⟩→

! g10 , g01 ∼
⟨/ ⟩→

' g11] where / = g00 → g01 _ g10 → g11

ctor-uni(/)�f = err / where / = g _ g ′

Fig. 13. Data-flow-tracking unification.

Notice that because we look up both pairs (g, g ′) and (g ′, g) in the cache, we will only ever
traverse a given data flow between two variables in a single direction only, instead of potentially
traversing the data flow once in each direction, which could otherwise happen in the presence of
type variable cycles, such as U <: V, V <:U . Long cyclic chains could lead to a potentially exponential
amount of erroneous data flows, which we avoid this way. Moreover, our concrete implementation
performs a breadth-first search while following the algorithm of Figure 13 in order to find the
shortest erroneous paths, and then stops the search without traversing further constraints. From
our own observations, this seems to make inference fast in practice.5 We only report one erroneous
path to the programmer to explain a given error, even when many possible paths (including several
shortest ones) are available. This choice can be considered arbitrary, as there is no reason to consider
that one particular path should be better at explaining the error than the others. In the future,
different approaches to report such equivalent paths could be studied: We could report all paths,

5This can be observed in the web demo, which updates the output quickly upon every keystroke, even for larger programs.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

237:18 Bhanuka, Parreaux, Binder, and Brachthäuser

explain cyclic data flows separately to programmers, or use heuristics to determine which path will
be more understandable.

4.2 Detailed Error Reports

We create error reports from the data flows of failed unifications. Each data flow is transformed into
a sequence of source locations separated by alternating data flow directions, encoding the back-
and-forth nature of higher-level error, and possibly containing nested flows when the problematic
unification is indirect and goes through type constructor arguments. Additional type information
in the data flow is used to add helpful details to the report. The data flow information can be used
for interactive error reporting, interactive code exploration, code hints in IDEs to name a few. Our
current implementation only reports errors as we explain below.

Example 4.1 (Level-0 Data Flow). We can visualize a data flow as a type flowing through a
sequence of program locations. A constraint is the most basic data flow. We can translate the
subtyping constraint U?0 <: g?1 into the data flow U <:?0 ·?1 g . After unification, g and U must be the
same type, so we can say that the data represented by the type flows through the locations ?0 and
?1. This can be visualized by the following diagram:

U g
?0 ?1

Example 4.2 (Level-1 Data Flow). We annotate the second program from Figure 3b, which yields
the following annotated program:

let xℓ0 = 2ℓ1

let yℓ2 = (if true then xℓ4 else "x"ℓ5)ℓ3

For this program we generate the constraints Intℓ4 ·ℓ0 ·ℓ1 <:U ℓ3 ·ℓ2
~ and Strℓ5 <:U ℓ3 ·ℓ2

~ . We get a unification
error for Int <:?0 U~ :>

?1 Str where ?0 = ℓ1 · ℓ0 · ℓ4 · ℓ3 · ℓ2 and ?1 = ℓ2 · ℓ3 · ℓ5. Notice that invoking
symmetry for Str relation to creates a linear data flow. This flow looks like this:

Int StrU~
ℓ1 ℓ0 ℓ4 ℓ3 ℓ3 ℓ5

Example 4.3 (Level-2 Data Flow). Similarly, we annotate the locations for the program in Figure 3c
which yields the following annotated program:

let g xℓ1 = (not xℓ2 , (if true then xℓ4 else 5ℓ5)ℓ3)

We generate the following constraints and unification error for UG and U8C4
6. The constraints are

Intℓ5 <:U ℓ3
8C4 , U

ℓ4 ·ℓ1
G <:U

ℓ3
8C4 and U

ℓ1
G <:Boolℓ2 . We visualized the unification error Int <:ℓ5 ·ℓ3 U8C4 :>

ℓ3 ·ℓ4 ·ℓ1

UG <:ℓ1 ·ℓ2 Bool in the following way:

Int U8C4 UG Bool
ℓ5 ℓ3 ℓ3 ℓ4 ℓ1 ℓ1 ℓ2

Example 4.4 (Constructor Data Flow). We introduce the following program to demonstrate a
nested data flow:

let xℓ0 = trueℓ1

let yℓ2 = (if true then (xℓ4 , "true")ℓ6 else ("false"ℓ5 ,"false")ℓ7)ℓ3

We consider constraints (U ℓ4
;
⊗ℓ6 _) <: U ℓ3 ·ℓ2

~ , (Strℓ5 ⊗ℓ7 _) <: U ℓ3 ·ℓ2
~ , Boolℓ1 ·ℓ0 <: U ℓ4

;
. Unification gives

an error for Bool <:ℓ1 ·ℓ0 ·ℓ4 U; ∼
⟨/ ⟩⊗

! Str where / = (U ℓ4
;
⊗ _) <:ℓ6 ·ℓ3 ·ℓ2 U~ :>

ℓ2 ·ℓ3 ·ℓ7 (Strℓ5 ⊗ _) <: U~ . We
elide the right type argument and irrelevant provenances for clarity. It is visualized in the following
diagram:
6U8C4 is the type for the if-then-else expression.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:19

U ℓ4
;
⊗ _ Strℓ5 ⊗ _U~

Bool U; Str

ℓ6 ℓ3 ℓ3 ℓ5

ℓ 4

ℓ
5

ℓ0 ℓ1 ℓ4

Converting this representation into a textual error message is straightforward. The sequence
of program locations are shown vertically betwe en lines describing intermediate types. The
constructor data flow is shown with a horizontal offset corresponding to the height of the nested
data flow in the diagram. Our layout is not prescriptive and future implementations can experiment
with other layouts.

Notice that in this section, we now unify constructor arguments using the non-directional symbol
∼ instead of the directional <:. This is appropriate because some type constructors can be invariant
in OCaml, and even variant constructors use unification semantics during type inference anyway.
But since product, sum, function, and other types can still be considered variant even in ML (because
their type parameters are used only at one polarity in their definitions), this can still be used to
construct properly directional flows in type error explanations. For instance, notice that in the
diagram above, we use directional arrows in all the edges of the graph, because ⊗ is covariant in
its first argument. We would use a non-directional edge if the type constructor was invariant, for
example, if it had been a mutable reference. We can reconstruct the directionality of these variant

flows by inspecting the nature of the type constructor in the nested ∼
⟨/ ⟩

⊗|⊕|→

! |' unification forms.
We also include a one-line flow summary (or outline) in the survey error messages. It was omitted

from the introductory examples as it is not essential. At a glance, it shows the user a high-level
overview of the erroneous flow by stripping away the location info and using ASCII symbols to
show the flow direction. Figure 14 shows flow summaries for the examples discussed above.

(?a) ---> (g)

(a) Example 4.1

(int) ---> (?a) <--- (str)

(b) Example 4.2

(int) ---> (?a) <--- (?b) <--- (str)

(c) Example 4.3

(bool) ---> (?a) ~~~> (?a * _) ---> (?b) <--- (str * _) <~~~ (str)

(d) Example 4.4

Fig. 14. Flow summary for data flows shown in Section 4.2

5 EXPERIMENTAL EVALUATION

In this paper, we hypothesize that flow-based type error messages are more effective than location-
based type error messages in helping programmers understand errors. Traditional error messages
only provide one of the possible locations related to each error, which can be useful to understand
where a program goes wrong but is often insufficient to understand the full context of the error. In
contrast, our proposed system presents the flow of types, which intends to help understand how a
program is goes wrong. Traditional systems thus focus on locality, while we attempt to facilitate
causal reasoning, which we believe is essential to effectively understand and repair errors.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

237:20 Bhanuka, Parreaux, Binder, and Brachthäuser

We conduct a randomized quasi-experimental study to validate our hypothesis. The experiment
compares the understanding of programmers using flow-based type error messages with those
using traditional location-based error messages.

In the user study, we ask participants to understand and describe program errors, measuring a)
the perceived satisfaction of the participants with the provided error messages and b) whether the
participant sufficiently understood the error.

5.1 Experiment Design

The experiment has been conducted in form of an online survey (using lab.js [Henninger et al. 2021]
and hosted on Open Lab [Shevchenko 2022]). After a demographic questionaire and a short introduc-
tion to OCaml, participants were presented with a series of errornous OCaml programs. Provided
with the program and an error message (side-to-side), participants were invited to understand the
error using the provided error message followed by a series of questions:

Q1 “In your own words: what is the problem in the program above?”
Q2 “How much did the error message help you to locate the problem”
Q3 “How much did the error message help you to understand the problem”

The first question (Q1) was asked as free form text asking participants to keep the answer short.
The remaining two questions (Q2 and Q3) were answered on a five-point Likert scale ranging from
“Not helpful” to “Very helpful”. The survey ended with a single optional free form text field asking
users “Is there anything you want to tell us?”.

Conditions. When starting the survey, each participant was randomly assigned (drawn without
replacement) to one of three conditions:

(A) HMℓ – our implementation of HMℓ , extending SystemSub with flow-based type errors.
(B) OCaml – as a first control group, we compare against the standard OCaml compiler.
(C) Helium – as a second control group, we compare against Helium [Heeren et al. 2003].

Helium is a compiler for Haskell, not OCaml, but the subset of programs we consider can be
easily translated from OCaml to Haskell. We therefore translated the OCaml examples to Haskell
by hand, used Helium to generate an error message, and translated the types contained in the
resulting error message back to use OCaml Syntax.

Selection of programs. We prepared ten different ill-typed example programs that we manually
ranked as “easy” (3), “medium” (4), or “hard” (3). Programs labeled as “easy” were constructed
specifically for the study, while examples labeled “medium” or “hard” were selected from the
datasets shared by [Seidel et al. 2017]. From each of the three categories, each participant was
presented with two randomly sampled example programs; that is, six programs in total. While
the order of examples within each category was random; the categories itself have always been
presented in ascending complexity.

5.2 Participants

We shared the online survey with professionals and researchers by posting it on relevant online
platforms (such as Reddit and Twitter). Participants were asked to self-estimate their experience in
programming in general, functional programming, statically typed programming, and programming
in OCaml on a 5-point Likert scale [Feigenspan et al. 2012]. From a total of 455 participants, 318
started and 119 concluded the survey (40 HMℓ , 39 OCaml, 40 Helium). We manually excluded two
participants (both in the OCaml condition) since they visibly did not invest enough effort to answer
the questions. Of the 117 non-excluded participants, 70 assigned themselves an expertise ≥ 4 for

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:21

Q2: “How much did the error message help you to locate the problem?”
easy1 easy2 easy3 medium1 medium2 medium3 medium4 hard1 hard3

A B C A B C A B C A B C A B C A B C A B C A B C A B C
0%

25%

50%

75%

100%

Q3: “How much did the error message help you to understand the problem?”
easy1 easy2 easy3 medium1 medium2 medium3 medium4 hard1 hard3

A B C A B C A B C A B C A B C A B C A B C A B C A B C
0%

25%

50%

75%

100%

Fig. 15. Participants answering the respective question on a five-point Likert scale from “Not helpful” (top,
red) to “Very helpful” (bo�om, blue). We compare conditions HMℓ (A), OCaml (B), and Helium (C).

“functional programming” or “OCaml”. Only 14 participants did assign themselves an expertise ≤ 3

for all categories.

5.3 Evaluation

The study sets out to analyse whether the error-message condition (HMℓ , OCaml, or Helium) signif-
icantly influences a) the perceived usefulness of the error messages, as well as b) the understanding
of the programming error. We first discuss the evaluation of perceived usefulness (Q2 and Q3)
before discussing the evaluation of the open question (Q1).

After data collection, we realized a mistake made while hand-translating Helium error message
for hard2 back to OCaml types. It left a Haskell formatted list type, whichmight have been confusing
to participants and led to poor responses. Thus we exclude example hard2 from our evaluation.

5.3.1 Perceived Usefulness (Q2 and Q3). For each of the ten individual example programs, and
each of the three conditions (A), (B), and (C), Figure 15 presents the results for the perceived
usefulness reported by participants. The five-point Likert-scaled data is visualized as stacked bar
charts, where the lowest (dark-blue) component corresponds to the answer “Very helpful”, and the
highest (dark-red) component corresponds to the answer “Not helpful”.

Locating the problem (Q2). Performing a Kruskal-Wallis rank sum test [Kruskal and Wallis 1952]
for each of the ten tasks, we can find significant differences for easy2 (? = 0.0119, j2 = 8.87), easy3
(? = 0.0025, j2 = 11.96), medium2 (? = 0.0067, j2 = 10.015). Table 1 lists the full results for all
performed Kruskal-Wallis rank sum tests. All participants correctly described the error for program
easy1.

To determine which groups are different, we perform a post-hoc Dunn test [Dunn 1964] for each
of the significant example programs. A Bonferonni adjustment of the ?-value is used to account for
the error rate introduced by the pair-wise comparison. For easy2, we have significant differences
for �−� with −2.934363 (? = 0.0050). That is, participants reported messages of HMℓ to help
less with locating than those of OCaml. For easy3, we have significant differences for �−� with
−3.2893 (? = 0.0015) and�−� with −2.7449 (? = 0.0091). That is, participants reported messages of
HMℓ to help less with locating than those of OCaml or Helium. For medium2, we have significant

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

237:22 Bhanuka, Parreaux, Binder, and Brachthäuser

Table 1. Results of all Kruskal-Wallis tests per program.

Q1 Describe Q2 Locate Q3 Understand

Program ? j2 ? j2 ? j2

easy1 N/A N/A 0.7748 0.51 0.0805 5.04

easy2 0.8808 0.25 0.0119 8.87 0.6259 0.94

easy3 0.3015 2.40 0.0025 11.95 0.0860 4.91

medium1 0.8943 0.22 0.5009 1.38 0.9988 0.00

medium2 0.7996 0.45 0.0067 10.02 0.1727 3.51

medium3 0.4535 1.58 0.9386 0.13 0.5235 1.29

medium4 0.9042 0.20 0.6442 0.88 0.3943 1.86

hard1 0.8190 0.40 0.2410 2.85 0.0632 5.52

hard3 0.4928 1.42 0.1257 4.15 0.3650 2.02

Q1: “In you own words: what is the problem in the program above?”
easy1 easy2 easy3 medium1 medium2 medium3 medium4 hard1 hard3

A B C A B C A B C A B C A B C A B C A B C A B C A B C
0%

25%

50%

75%

100%

Fig. 16. Percentage of participants that correctly described the problem. We compare conditions HMℓ (A),
OCaml (B), and Helium (C).

differences �−� with −3.018982 (? = 0.0038). That is, participants reported messages of HMℓ to
help less with locating than those of Helium.

Understanding the problem (Q3). Similar to Q2, we perform a Kruskal-Wallis test, however there
is no significant difference between the results of the three systems.

5.3.2 Understanding Errors (Q1). To evaluate the open question Q1, we manually assigned a
binary grade to the provided textual answers, judging whether the participant understood the
underlying problem or not. Emphasis was given on participants’ understanding of erroneous
program expressions and the fixes they suggested. To avoid biases, themanual codingwas performed
blind—that is, the condition of a participant during evaluation was hidden to the grader. The same
grader graded the responses from all participants. Figure 16 reports the results for the three
conditions, again grouped per example program.

5.4 Interpretation

Our experiment yielded little statistically significant difference between respondents using different
tools to locate and understand errors. In general, the study cannot show that HMℓ improves
understanding or localization of problems.
In a few cases, other systems even performed significantly better than HMℓ . For Q2, which

measured the perceived value of the error message in locating the error, easy2, easy3, and medium2
showed significant results. In all three cases, participants reported that HMℓ error messages helped
less in locating the problem. All three programs (especially easy2 and easy3) are comparatively
small. Constructing (and consuming) a detailed data flow explanation that is longer than the
programs might not pay off in complexity. For Q3, which measured the perceived value of the error
message in understanding the error, no results were significant.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:23

A qualitative analysis of the freeform feedback provided by participants reveals interesting
insight into why HMℓ might have performed worse than OCaml and Helium in locating errors.

Errors are too verbose or unnecessary for small programs. Many participants reported the HMℓ

errors to be excessively verbose, which was detrimental to understanding errors for small programs.

The earliest examples were so trivial I could’ve figured them out without error messages.

However, some participants also reported that they were indeed useful for longer problems.

I felt that the error messages were more helpful on the longer problems, only because I
didn’t need to look at them on the shorter problems.

The problem of errors that are too verbose could be remedied by designing better layouts or using
heuristics to hide some of the extra locations for simple programs. Furthering the previous point,
in many of the simple cases (in easy and medium programs), the respondents were frustrated by
the comparatively large number of locations reported by HMℓ and instead just wanted to see “the”
location where the error happened. We conjecture that it would be helpful to combine our work
with previous research on identifying single error locations and provide an “incipit” of sorts before
the precise data flow—reporting a single location, which is often enough to understand simple
errors. This way, programmers would only look at the precise data flow when they need to obtain
more context and understanding for the root causes of the error. In an interactive setting the
additional information provided by flow errors could be presented on request of the user. While
the participant’s concerns are important and it would be interesting to investigate more compact
representations, real-world programs are almost always larger than the programs surveyed in our
study.

Error message layout and notation. Respondents also complained about the error message layout
as well as other aspects of the used notation, including the data-flow arrows, line number formatting,
ellipsis for large code and so on.

Many of the error messages I was shown seemed upside-down, in that they showed what I
believe to be the source of the error at the bottom, with a stack of more-removed sources of
incompatible constraints extending upwards. This might look better coming from a CLI,
but in this format it was weird and unhelpful.

However, other partipants appreciated the structure of HMℓ ’s error messages:

In general, I really like the detail and consistency in the error messages. This really helps
with solving more subtle errors, but it also adds a lot of noise for more simple issues. I feel
like this isn’t a real problem since even a little experience will allow you to immediately
identify the issues at a glance of the error message by looking at the right things. One
possible improvement could be to mention (and preview) the offending statement with the
relevant parts marked before going in depth on the breakdown of the type interpretation.
As it is now, one part of the breakdown hides the other conflicting part of the statement

There is ample opportunity to improve all aspects of the presentation of error messages, includ-
ing the data-flow summaries, the textual explanation, and the graphical layout. For each of the
components, the usefulness is still unclear, the concrete design can be improved, and the interplay
between the different aspects needs to be studied. More research and testing is needed to develop
effective error message layouts for data-flow style reasoning.
One factor that might have contributed to the confusion of participants is that many of our
respondents were experienced practitioners who were accustomed to message layout from standard
tools. We also conjecture that experienced programmers already developed a deep understanding
for how type-checking in OCaml proceeds and thus learnt to infer information from existing error

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

237:24 Bhanuka, Parreaux, Binder, and Brachthäuser

messages. It naturally requires some time to adapt to the new format of error messages, as also one
participant described:

The error message has all the information, it takes some time to get used to it though.

Similarly, many respondents found the unification variable shown in HMℓ messages unhelpful.
The unexplained “?a” notation used for unification variables combined with the new concept of
data flows was confusing to these participants. We conjecture that a gentle introduction to HMℓ ’s
notation, as well as familiarity built over time, could potentially remedy these issues.

Flow-based reasoning. The work presented in this paper builds upon the assumption that the
underlying mental model (also called “notional machine” by du Boulay et al. [1981]) of flow-based
reasoning is natural and can help programmers to understand and locate error messages. A possible
interpretation of the below user feedback is that this assumption is false.

I honestly find the ‘int --> ?a <-- bool’ notation quite confusing. It is useful in some
cases where there is no obvious expected or actual type, but in cases where the unification
variable is unnecessary, it adds quite a bit of unnecessary mental overhead.

Maybe understanding how values (and types) flow through a program does not contribute to the
understanding of type errors. Maybe guiding users along the data flow is not helpful afterall, since
they could also follow the data flow themselves without the overhead of processing verbose error
messages with positions marked by unification variables that are not part of the original program
text. Our work aims to support users in this process, which only makes sense if the process itself is
practically useful.

No specialized messages. OCaml and Helium had specialized messages for certain errors. Messages
like “function applied to too many arguments” (hard1) and “expected type . . . ” seem more helpful
than just data flow information. Of course, HMℓ could be specialized to also add such helpful text
to error messages, which are orthogonal to the idea of presenting data flow.

5.4.1 The Need for Detailed Explanations. While some participants remarked that the messages
of HMℓ are too verbose, those in the control groups often remarked the opposite about messages
generated by OCaml and Helium.

I think in many of the examples it would be helpful for the errors to explain where the
constraint was introduced that we are hitting [...].

Another participant recognized the difficulty of extensive inference:

Presumably some of the harder ones were caused by extensive inference throughout the
code. It might help to show and look at multiple errors in such cases. Perhaps there’s a
way to group them, but this is hypothetical.

Yet another participant would like to see more type information of the different components that
constitute a problematic call.

The error messages are not at all clear about what the expected and what the found type
is. Also, it is not clear why it believes the found type is the found type. Maybe it could
show the different elements that are applied to the function separately as well?

Participants were also aware of the difficulty to trade-off concise error messages and sufficiently
detailed information.

Almost every type error in a program is an accumulation of multiple (smaller) erroneous
parts. Any such error that states "something happened exactly here and here" is incomplete,
because there’s far more context that should be included to fully understand the error.
Some languages show the entire chain of type unification that led to the error, but that’s

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:25

rather verbose. I hope one can find a solution that shows just enough context to be perfectly
helpful.

The above quotes are only a few examples of the feedback that we received by the control groups.
In many cases, respondents want to know source expressions for the two conflicting types, instead
of the singular location where the error was triggered. They also want to see surrounding source
code in the error message to gain context.
HMℓ ’s error messages address exactly these two concerns. We interpret this as support our

hypothesis that data-flow-style error messages could be useful for programmers.
Overall, the quantitative analysis cannot show that HMℓ improves over ocamlc or Helium. The

qualitative analysis suggests that this might be due to the error message layout and notations or the
verbosity. However, some respondents found the verbosity and context helpful as well, particularly
for large programs and subtle errors. HMℓ ’s contribution is the detailed data flow information, not
the specific error message layout. However, HMℓ in its current form is certainly not perfect and
respondents point out a few shortcomings, such as the exact textual representation of errors. We
believe, in future work can well utilize it to design better error message layouts, code exploration
tools, and IDE intellisense features.

5.5 Threats to Validity

Internal validity. For most of the tasks, the results were insignificant. Potentially, programs in the
used corpus were not complex enough to measure differences between the systems. The study was
conducted remotely with no control over the context. Participants might have been distracted while
answering, spent different amount of time (mean = 32min, sd = 22min), and have used different
devices. We used the browser’s user agent to identify mobile devices. We were initially concerned
that mobile users may have a harder time taking the survey and may subsequently provide a worse
quality of responses, but all open-text answers provided by the 14 participants on mobile devices
were of a high quality, so we decided to keep them. Participants might not know enough OCaml to
understand the errors, which we tried to address by presenting each participant with a one-page
introduction into the relevant OCaml concepts. Participants might recognize the different styles
of error messages from different systems. We tried to limit the influence of this bias by fixing
one participant to one specific condition. However, experienced OCaml programmers reportedly
recognized the errors generated by Helium and our system to be non-standard. Participants might
be biased in favour of our system, since it is socially desirable: firstly, it is always interesting to
see a new tool that could turn out an improvement and secondly, because participants might be
fellow researchers and practitioners that want to support research in the field. Participants were
not trained on how to read HMℓ error messages. Unknown notation and unconventional layout of
error messages might have confused participants.

External validity. Our example programs were sourced from university students solving pro-
gramming assignments [Seidel et al. 2017]. These may not be indicative of the broader range of
programming practices prevalent at large. The results of the study might not carry over to languages
other than OCaml. Our approach can be used with all languages that implement Hindley-Milner-
style type inference. However, we chose OCaml because of extensive empirical analysis already
done on OCaml error localization by other researchers [Geng et al. 2022; Zhang and Myers 2014]
and because of the relative simplicity of the language’s base constructs. For instance, compared
to Haskell, the lack of type classes in OCaml makes it easier to quickly introduce the language to
beginner and novice programmer before starting the survey. Conveniently, previous research made
available large datasets of ill-typed OCaml programs ranging from low to high complexity.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

237:26 Bhanuka, Parreaux, Binder, and Brachthäuser

6 RELATED WORK

Algebraic subtyping. Type inference for systems with subtyping and parametric polymorphism
is a known hard problem. We build upon the algebraic subtyping approach developed in [Dolan
2017] and [Dolan and Mycroft 2017]. More precisely, we build upon the more recent publications
[Parreaux 2020] and [Parreaux and Chau 2022].

Explaining type errors with data flow. The approach to explaining type errors using the data flow
of the program is very reminiscent of the similar approach by Gast [2005]. It describes an algebra
based on subtyping constraints and defines a "consistency" relation between types. This is similar
to how we unify the bounds of type variables to find flow errors where incompatible types flow
into or flow from the same type variable. Neubauer and Thiemann [2003] use sum types to encode
all the types an expression can be and flows sets to track the locations each type can flow through.
Our work builds on this by formally categorizing different kinds of data flows and describing a
systematic approach to display error reports for them. We also provide an implementation of our
algorithm that integrates with existing type systems and supports let polymorphism.

Algorithmic error localization. Previous work on type errors focus on finding the program expres-
sion most likely causing the error. Zhang and Myers [2014] demonstrate a constraint based system
to identify expressions that create unsatisfiable constraints. Using heuristics they pick the simplest
explanation for the error. Loncaric et al. [2016] also demonstrate a constraint based system that
can integrate with existing type systems to produce error reports efficiently. Our system directly
integrates provenance tracking with constraint solving allowing us to track detailed information.
Heuristics based error localization can complement detailed data flow errors.

Data driven error localization. More recent work by Geng et al. [2022]; Seidel et al. [2017] leverages
language models and supervised learning techniques to localize errors. They use large datasets with
pairs of ill-typed and fixed programs to train models, which can then predict the likely location
for the fix with high accuracy. However these techniques are limited to identifying a program
expression and cannot create error messages which explain the flow that causes the error.

Improving compiler error messages. There’s been considerable research on type errors messages
[Heeren 2005] and their role in programmer experience. Becker et al. [2019] mention that type error
messages play an important role in helping the programmer fix the error. Marceau et al. [2011a]
argue that reporting all type errors and mapping error messages back to source code are crucial
for effective error messages. Furthermore, Marceau et al. [2011b] recommends not to highlight
specific fixes as they may be incorrect. Techniques from Wrenn and Krishnamurthi [2017] can
be used to evaluate and improve data flow style error messages. Finally, Kochhar et al. [2016]
surveyed software engineering practitioners to find that respondents prefer general solutions that
can integrate with existing tooling and IDEs, furthermore they should scale to large codebases. Our
system addresses the key challenge of mapping an error back to source code locations and existing
tools and IDEs can be instrumented with the detailed data provenance information for interactive
debugging.

7 CONCLUSION AND FUTURE WORK

We now conclude and suggest directions for future work.

7.1 Conclusion

If we want powerful type inference techniques to become broadly accepted in mainstream program-
ming languages, we have to generate excellent error messages when type inference goes wrong. In

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:27

this article, we laid some foundations to improve one important class of error messages: type error
messages arising from constraint solving for both subtyping and equality constraints. Our main
insight is that these constraints contain information about the data flow that led to the error, and
that we can use this information to generate more informative error messages. We carried out a
user study and compared our error messages to those of ocamlc and Helium. The study suggests
that the additional information can potentially be overwhelming, so we have to carefully consider
under what circumstances we use it and and how much of it we present to the user. While the
empirical part of the study could not quantitatively show that HMℓ improved over the state of the
art, we also received encouraging feedback by participants which suggest that the general approach
of flow-based error messages is worthwhile.

7.2 Future Work

We see two important directions of future work related to the extension of our method to model
additional features of common type systems.

Let polymorphism. The formalism that we presented does not include let bindings which are
polymorphically generalized, even though this is a standard feature of both the Hindley-Damas-
Milner algorithms and algebraic subtyping. Our implementation supports both top-level and local
let-polymorphism. We are yet to investigate its formalization, although we do not expect any
particular difficulty. However, authors such as Vytiniotis et al. [2010] argue that local let bindings
usually need not be generalized.

Occurs check. We have not implemented the occurs check in our prototype yet. The occurs check
is a standard feature of Hindley-Milner type inference that catches cycles in constraint graphs.
One of the most significant results in our study is that occurs-check failures are much harder
to understand for users than unification failures, and so there is much space for improvement.
We hope to significantly improve these error messages using our approach based on data flows.
Running the occurs-check separately also has algorithmic complexity advantages [Rémy 1992].

More advanced type system features. We would like to investigate how flow-based reasoning
scales to more advanced type system features, where type error messages can often become even
more confusing than traditional unification error. For example, we are particularly interested in
studying support for higher-rank and first-class polymorphism [Jones et al. 2007], especially since
these approaches could benefit from subtyping [Le Botlan and Rémy 2014]. Other important and
tricky type system features include generalized algebraic data types, constrained types, modalities,
and linear types.

ACKNOWLEDGMENTS

We want to thank the anonymous reviewers for their comments and for their help in improving
the paper. We would also like to thank Volker Franz for feedback on the study design and Marlen
Brachthäuser for help with the study design and the empirical evaluation. Jiří Beneš contributed
the idea to replicate the flow overview in a gutter on the left of our error messages.

DATA-AVAILABILITY STATEMENT

The implementation of the system HMℓ described in this paper is permanently available on Zenodo
[Bhanuka et al. 2023]. The latest implementation, which may contain slight changes and features
not described in this paper, can be found at github.com/hkust-taco/hmloc. An offline version of the
user survey, the raw collected data, as well as the processing scripts are available on request.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

https://github.com/hkust-taco/hmloc

237:28 Bhanuka, Parreaux, Binder, and Brachthäuser

REFERENCES

Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier, Brian Harrington, Amir Kamil, Amey

Karkare, Chris McDonald, Peter-Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Messages

Considered Unhelpful: The Landscape of Text-Based Programming Error Message Research. In Proceedings of the Working

Group Reports on Innovation and Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-WGR

’19). Association for Computing Machinery, New York, NY, USA, 177–210. https://doi.org/10.1145/3344429.3372508

↩→ page 26

Ishan Bhanuka, Lionel Parreaux, David Binder, and Jonathan Immanuel Brachthäuser. 2023. Getting Into The Flow:

Towards Better Type Error Messages for Constraint-Based Type Inference. https://doi.org/10.5281/zenodo.8332129

Implementation of the system described in the paper.. ↩→ pages 5 and 27

Stephen Dolan. 2017. Algebraic Subtyping: Distinguished Dissertation 2017. BCS, Swindon, GBR. https://dl.acm.org/doi/

book/10.5555/3180976 ↩→ pages 5, 11, and 26

Stephen Dolan and Alan Mycroft. 2017. Polymorphism, Subtyping, and Type Inference in MLsub. In Proceedings of the

44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL 2017). Association for

Computing Machinery, New York, NY, USA, 60–72. https://doi.org/10.1145/3009837.3009882 ↩→ pages 5, 11, and 26

Benedict du Boulay, Tim O’Shea, and John Monk. 1981. The black box inside the glass box: presenting computing concepts to

novices. International Journal of Man-Machine Studies 14, 3 (1981), 237–249. https://doi.org/10.1016/S0020-7373(81)80056-

9 ↩→ page 24

Olive Jean Dunn. 1964. Multiple comparisons using rank sums. Technometrics 6, 3 (1964), 241–252. https://doi.org/10.1080/

00401706.1964.10490181 ↩→ page 21

Janet Feigenspan, Christian Kästner, Jörg Liebig, Sven Apel, and Stefan Hanenberg. 2012. Measuring programming experience.

In 2012 20th IEEE international conference on program comprehension (ICPC). IEEE, 73–82. https://doi.org/10.1109/ICPC.

2012.6240511 ↩→ page 20

Holger Gast. 2005. Explaining ML Type Errors by Data Flows. In Implementation and Application of Functional Languages,

Clemens Grelck, Frank Huch, Greg J. Michaelson, and Phil Trinder (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

72–89. https://doi.org/10.1007/11431664_5 ↩→ pages 5 and 26

Chuqin Geng, Haolin Ye, Yixuan Li, Tianyu Han, Brigitte Pientka, and Xujie Si. 2022. Novice Type Error Diagnosis with

Natural Language Models. In Programming Languages and Systems, Ilya Sergey (Ed.). Springer Nature Switzerland,

196–214. https://doi.org/10.1007/978-3-031-21037-2_10 ↩→ pages 25 and 26

Bastiaan Heeren. 2005. Top quality type error messages. Ph. D. Dissertation. Utrecht University. ↩→ page 26

Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. 2003. Helium, for Learning Haskell. In Proceedings of the 2003

ACM SIGPLAN Workshop on Haskell (Uppsala, Sweden) (Haskell ’03). Association for Computing Machinery, New York,

NY, USA, 62–71. https://doi.org/10.1145/871895.871902 ↩→ pages 1, 2, and 20

Felix Henninger, Yury Shevchenko, Ulf K Mertens, Pascal J Kieslich, and Benjamin E Hilbig. 2021. lab.js: A free, open, online

study builder. Behavior Research Methods (2021), 1–18. https://doi.org/10.3758/s13428-019-01283-5 ↩→ page 20

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. 2007. Practical type inference for arbitrary-

rank types. Journal of Functional Programming 17, 1 (2007), 1–82. https://doi.org/10.1017/S0956796806006034 ↩→ page 27

Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’ Expectations on Automated Fault

Localization. In Proceedings of the 25th International Symposium on Software Testing and Analysis (Saarbrücken, Germany)

(ISSTA 2016). Association for Computing Machinery, New York, NY, USA, 165–176. https://doi.org/10.1145/2931037.

2931051 ↩→ page 26

William H. Kruskal and W. Allen Wallis. 1952. Use of Ranks in One-Criterion Variance Analysis. J. Amer. Statist. Assoc. 47,

260 (1952), 583–621. https://doi.org/10.1080/01621459.1952.10483441 ↩→ page 21

Didier Le Botlan and Didier Rémy. 2014. MLF: Raising ML to the Power of System F. SIGPLAN Not. 49, 4S (jul 2014), 52–63.

https://doi.org/10.1145/2641638.2641653 ↩→ page 27

Calvin Loncaric, Satish Chandra, Cole Schlesinger, and Manu Sridharan. 2016. A Practical Framework for Type Inference

Error Explanation. SIGPLAN Not. 51, 10 (oct 2016), 781–799. https://doi.org/10.1145/3022671.2983994 ↩→ page 26

Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011a. Measuring the Effectiveness of Error Messages

Designed for Novice Programmers. In Proceedings of the 42nd ACM Technical Symposium on Computer Science Education

(Dallas, TX, USA) (SIGCSE ’11). Association for Computing Machinery, New York, NY, USA, 499–504. https://doi.org/10.

1145/1953163.1953308 ↩→ page 26

Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011b. Mind Your Language: On Novices’ Interactions with

Error Messages (Onward! 2011). Association for Computing Machinery, New York, NY, USA, 3–18. https://doi.org/10.

1145/2048237.2048241 ↩→ page 26

Matthias Neubauer and Peter Thiemann. 2003. Discriminative Sum Types Locate the Source of Type Errors. In Proceedings of

the Eighth ACM SIGPLAN International Conference on Functional Programming (Uppsala, Sweden) (ICFP ’03). Association

for Computing Machinery, New York, NY, USA, 15–26. https://doi.org/10.1145/944705.944708 ↩→ page 26

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

https://doi.org/10.1145/3344429.3372508
https://doi.org/10.5281/zenodo.8332129
https://dl.acm.org/doi/book/10.5555/3180976
https://dl.acm.org/doi/book/10.5555/3180976
https://doi.org/10.1145/3009837.3009882
https://doi.org/10.1016/S0020-7373(81)80056-9
https://doi.org/10.1016/S0020-7373(81)80056-9
https://doi.org/10.1080/00401706.1964.10490181
https://doi.org/10.1080/00401706.1964.10490181
https://doi.org/10.1109/ICPC.2012.6240511
https://doi.org/10.1109/ICPC.2012.6240511
https://doi.org/10.1007/11431664_5
https://doi.org/10.1007/978-3-031-21037-2_10
https://doi.org/10.1145/871895.871902
https://doi.org/10.3758/s13428-019-01283-5
https://doi.org/10.1017/S0956796806006034
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1145/2641638.2641653
https://doi.org/10.1145/3022671.2983994
https://doi.org/10.1145/1953163.1953308
https://doi.org/10.1145/1953163.1953308
https://doi.org/10.1145/2048237.2048241
https://doi.org/10.1145/2048237.2048241
https://doi.org/10.1145/944705.944708

Ge�ing into the Flow 237:29

Lionel Parreaux. 2020. The Simple Essence of Algebraic Subtyping: Principal Type Inference with Subtyping Made Easy

(Functional Pearl). Proc. ACM Program. Lang. 4, ICFP, Article 124 (Aug. 2020), 28 pages. https://doi.org/10.1145/3409006

↩→ pages 5, 11, and 26

Lionel Parreaux and Chun Yin Chau. 2022. MLstruct: Principal Type Inference in a Boolean Algebra of Structural Types.

Proc. ACM Program. Lang. 6, OOPSLA2, Article 141 (oct 2022), 30 pages. https://doi.org/10.1145/3563304 ↩→ page 26

Didier Rémy. 1992. Extension of ML type system with a sorted equation theory on types. Research Report RR-1766. INRIA.

https://hal.inria.fr/inria-00077006 Projet FORMEL. ↩→ page 27

Eric L. Seidel, Huma Sibghat, Kamalika Chaudhuri, Westley Weimer, and Ranjit Jhala. 2017. Learning to Blame: Localizing

Novice Type Errors with Data-Driven Diagnosis. Proc. ACM Program. Lang. 1, OOPSLA, Article 60 (oct 2017), 27 pages.

https://doi.org/10.1145/3138818 ↩→ pages 20, 25, and 26

Yury Shevchenko. 2022. Open Lab: A web application for running and sharing online experiments. Behavior Research

Methods 54, 6 (2022), 3118–3125. https://doi.org/10.3758/s13428-021-01776-2 ↩→ page 20

Dimitrios Vytiniotis, Simon Peyton Jones, and Tom Schrijvers. 2010. Let should not be generalized. In Proceedings of the 5th

ACM SIGPLAN workshop on Types in language design and implementation. 39–50. https://doi.org/10.1145/1708016.1708023

↩→ page 27

Mitchell Wand. 1986. Finding the Source of Type Errors. In Proceedings of the 13th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages (St. Petersburg Beach, Florida) (POPL ’86). Association for Computing Machinery,

New York, NY, USA, 38–43. https://doi.org/10.1145/512644.512648 ↩→ page 1

John Wrenn and Shriram Krishnamurthi. 2017. Error Messages Are Classifiers: A Process to Design and Evaluate Error

Messages (Onward! 2017). Association for Computing Machinery, New York, NY, USA, 134–147. https://doi.org/10.1145/

3133850.3133862 ↩→ page 26

Danfeng Zhang and Andrew C. Myers. 2014. Toward General Diagnosis of Static Errors. SIGPLAN Not. 49, 1 (jan 2014),

569–581. https://doi.org/10.1145/2578855.2535870 ↩→ pages 25 and 26

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

https://doi.org/10.1145/3409006
https://doi.org/10.1145/3563304
https://hal.inria.fr/inria-00077006
https://doi.org/10.1145/3138818
https://doi.org/10.3758/s13428-021-01776-2
https://doi.org/10.1145/1708016.1708023
https://doi.org/10.1145/512644.512648
https://doi.org/10.1145/3133850.3133862
https://doi.org/10.1145/3133850.3133862
https://doi.org/10.1145/2578855.2535870

	Abstract
	1 Introduction
	1.1 Flow-Based Error Messages
	1.2 Complex Type Errors
	1.3 Contributions

	2 Classifying Type Errors
	2.1 Flow of Types
	2.2 Change of Direction
	2.3 Reporting Different Levels

	3 Formalization
	3.1 Terms and Locations
	3.2 Types and Provenances
	3.3 Type Inference

	4 Type confluence errors
	4.1 Unification Algorithm
	4.2 Detailed Error Reports

	5 Experimental Evaluation
	5.1 Experiment Design
	5.2 Participants
	5.3 Evaluation
	5.4 Interpretation
	5.5 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	Acknowledgments
	References

